
version 1.12.2.b

SIGNALPOP
AI DESIGNER
GETTING STARTED

Copyright © 2017-2023 SignalPop LLC. All rights reserved.

2

CONTENTS

Getting Started ... 1

Overview... 7

Product Minimum Requrements ... 7

Datasets .. 8

Creating Datasets ... 8

Creating the MNIST Dataset ... 9

Creating the MNIST ‘Source’ and ‘Target’ Datasets ... 10

Creating the CIFAR-10 Dataset .. 11

Creating an Image Dataset .. 12

Viewing Datasets .. 14

Analyzing Datasets ... 15

Iterative PCA Analysis ... 16

t-SNE Analysis ... 18

Gym Datasets ... 20

Creating a Gym Datases .. 21

Projects ... 22

Creating New Projects .. 22

Project Editing .. 23

Visual Configuration Dialogs ... 24

Text vs Graphical Editing ... 25

Model Toolbox .. 26

Layer Updates ... 27

Half Sized Memory .. 28

Freezing Learning.. 29

Opening Projects .. 30

Project Settings ... 31

Image Loading – LOAD_FROM_SERVICE Configuration ... 33

Training and Testing Projects .. 34

Scheduling Projects... 37

Adding a Project to the Schedule .. 39

3

Setting up Secure Database Access ... 40

Setting the Scheduling Database .. 44

Scheduling States.. 45

Importing and Exporting ... 47

Importing a Project ... 47

Importing Pre-Trained Models .. 48

Importing Weights .. 49

Importing Weights for Transfer Learning .. 50

Exporting Projects ... 51

Exporting to Docker .. 52

Custom Trainers .. 56

Custom Trainer Settings - Trainers .. 57

Custom Trainer Settings - Properties .. 57

Debugging .. 61

Real-Time ... 61

Histogram Blob Visualization .. 62

Image Blob Visualization ... 63

Model Debugging .. 64

Visualizations .. 66

Weight Visualization ... 66

Network Visualization ... 67

Label Impact Visualization .. 68

Evaluators ... 69

Image Evaluation .. 69

Dream Evaluation .. 70

Neural Style Transfer Evaluation ..71

Hardware .. 75

Processor Resource Window ... 75

Project Throughput ... 76

Real-Time Debug Timing .. 76

Memory Tester ... 77

4

Example Models.. 78

Domain-Adversarial Neural Networks (DANN) ... 78

Datasets .. 78

DANN Model ... 79

Validating the DANN Model .. 81

Deep Auto-Encoder Networks .. 83

Datasets .. 83

Auto-Encoder Model ... 83

Full Model ... 84

Model Analysis .. 85

Using Pre-Trained Auto-Encoder .. 89

Training Comparison ... 92

Siamese Network with Contrastive Loss for One-Shot Learning ... 94

Datasets .. 94

Siamese Net Model ... 94

Full Model ... 95

Training and Testing.. 99

Policy Gradient Reinforcement Learning .. 100

Datasets .. 100

Policy Gradient Model ... 101

Training ... 103

Deep Q-Learning (DQN) ... 105

NOISYNET Model ... 106

Training ... 108

LSTM Recurrent Learning ... 110

Shakespeare Output ... 110

LSTM Layer ... 112

LSTM Layer Internals .. 114

Training LSTM ... 116

LSTM_SIMPLE Layer ... 118

Training LSTM_SIMPLE .. 120

5

Encoder-Decoder Transformers (ChatGPT like) .. 122

Create the Transformer Model .. 123

Temporal Fusion Transformer Model for Time Series Prediction... 126

Data Preparation ... 130

Data Preprocessing ... 130

TFT for Electricity Use Prediction ... 133

TFT for Traffic Flow Prediction .. 139

Summary .. 145

Appendix A – SignalPop Universal Miner .. 146

Hardware Monitoring .. 146

Appendix B – Dataset Creator Interface .. 148

IXDatasetCreator Interface ... 148

IXDatasetCreator::Name ... 148

IXDatasetCreator::QueryConfiguration ... 148

IXDatasetCreator::Create .. 148

DatasetConfiguration Object .. 149

DatasetConfiguration::IsReadOnly .. 149

DatasetConfiguration::ID .. 149

DatasetConfiguration::Name .. 149

DatasetConfiguration::SelectedGroup .. 150

DatasetConfiguration::Settings... 150

DatasetConfiguration::Sort ... 150

DatasetConfiguration::Clone ... 150

DatasetConfiguration::SaveToFile .. 150

DatasetConfiguration::LoadFromFile .. 150

DataConfigSettingCollection Object .. 151

DataConfigSetting object .. 151

DataConfigSetting::VerifyInterface .. 151

DataConfigSetting::Name .. 151

DataConfigSetting::Extra .. 152

DataConfigSetting::Value ... 152

6

DataConfigSetting::Type .. 152

DataConfigSetting::Clone ... 152

DataConfigSetting::ToSaveString ... 152

DataConfigSetting::Parse .. 153

IXDatasetCreatorSettings Interface ... 153

IXDatasetCreatorSettings::VerifyConfiguration ... 153

IXDatasetCreatorSettings::GetCustomSetting ... 153

IXDatasetCreatorProgress Interface ... 154

IXDatasetCreatorProgress::OnProgress .. 154

IXDatasetCreatorProgress::OnCompleted .. 154

CreateProgressArgs Object ... 154

CreateProgressArgs::Aborted ... 155

CreateProgressArgs::PercentComplete... 155

CreateProgressArgs::PercentCompleteAsText ... 155

CreateProgressArgs::Message .. 155

CreateProgressArgs::Error .. 155

CreateProgressArgs::Abort ... 155

Example Source Code ... 156

References ... 157

7

OVERVIEW

The SignalPop® AI Designer is an application designed to help you develop, train, test and debug your
deep learning models that use the MyCaffe™ AI Platform [1]. The MyCaffe AI Platform was inspired by
the original open-source C++ Caffe project created by [2] while at Berkeley. For more information on
MyCaffe, see us on GitHub at http://github.com/mycaffe or NuGet at
https://www.nuget.org/packages?q=MyCaffe.

When discussing the designer, we will focus on several areas that are oriented around the common
tasks that take place when building, training and debugging a deep learning model. The main areas of
focus are:

• Datasets; these are the fundamental collections of data that models are trained on. Each
dataset contains a set of images that are separated into a training and testing set. This section
describes how to create and analyze datasets visually via the Iterative PCE and t-SNE
algorithms.

• Projects; each project contains a model description, a reference to the dataset for which the
model is run, and the model weights making up the trained model. In this section we discuss
building and editing models with the visual editor and then discuss how to train and test your
model.

• Debugging; debugging is an essential step in model development. Models can blow-up (drive
to infinity or NaN) during training and when this happens it is nice to have a set of tools that
help diagnose why. This section gives tips on how to better understand your models through
the debugging tools offered by the SignalPop AI Designer. We also discuss some of the tools
offered by the designer that help you diagnose your GPU hardware and describe how it is used.

So, let’s get started, but before we do, please make sure that you are running on a system that meets
the minimum requirements listed below.

PRODUCT MINIMUM REQUREMENTS

The SignalPop AI Designer was built for Windows developers running on either Windows 7 or Windows
10 PC’s that have at least one NVIDIA CUDA based GPU installed. With that in mind the minimum
requirements for the designer are as follows:

• Operating System: 64-bit Windows 7 or Windows 10
• System Memory (PC side): 8 GB or more
• Hard Disk Space: 10 GB free disk space
• GPU Model: NVIDIA 750TI or above (must have CUDA support and the latest NVIDIA driver 1)
• GPU Memory: 2 GB (4 GB or more is recommended)
• Multi-GPU Training: requires at least two headless GPUs that meet the GPU requirements above.
• Database: Microsoft SQL or Microsoft SQL Express 2008 R2 or above (2016 on Windows 10

recommended) running in Windows Authentication Mode.

1 To get the latest NVIDIA driver, please see https://www.geforce.com/drivers.

http://github.com/mycaffe
https://www.nuget.org/packages?q=MyCaffe
https://www.geforce.com/drivers

8

DATASETS

Datasets are the fundamental store of data used to train and test each deep learning model. A list of
images organized into a test set and training set make up each dataset. Image data is an ideal medium
for training deep learning systems for they are visual and therefore are easy for a human to quickly
understand - which can be very helpful when diagnosing their validity.

CREATING DATASETS

The first step when using the SignalPop AI Designer is to create the datasets that you wish to train
against. Dataset ‘Creators’ are plug-ins used to create each dataset. See the ‘Dataset Creators’ pane to
view each creator already installed with the product.

Figure 1 Creating Datasets

Take the following steps to create a new Dataset:

1.) Select the ‘Dataset Creators’ tab.
2.) Double-click the Dataset Creator (i.e., ‘CIFAR-10’) that you want to use, which will open the

Dataset Creator window for that dataset creator.
3.) Fill out the Dataset Creator properties.
4.) Run the Dataset Creator by pressing the ‘Run’ () button.

When the Dataset Creator completes running, the new dataset will appear under the Dataset Creator
name in the tree-view.

9

CREATING THE MNIST DATASET

The MNIST dataset is a dataset of 70,000 28x28 images of handwritten characters from the number
zero (0) through the number nine (9). 60,000 of the characters are used for training and 10,000 are used
for testing. This section describes how to create the MNIST dataset in the SignalPop AI Designer.

Before starting, first download the four GZ data files below from http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

 Once downloaded the MNIST Dataset Creator will use these files to create the MNIST Dataset.

Figure 2 Creating the MNIST Dataset

To create the MNIST Dataset, do the following:

1.) Double-click the MNIST Dataset Creator to open the MNIST Creator window.
2.) Next, add the MNIST *.gz files as shown above.
3.) Press the ‘Run’ () button to start creating the dataset.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz

10

CREATING THE MNIST ‘SOURCE’ AND ‘TARGET’ DATASETS

In addition to creating the standard MNIST dataset as described in the previous section, the MNIST
Dataset Creator also allows you to create the MNIST dataset that is overlaid on top of an image of your
choice to simulate environmental noise within the dataset images. This new dataset can be used as a
‘target’ dataset such as is used with Domain-Adversarial Training [3].

To create a ‘source’ MNIST dataset, follow the steps previously discussed to create the MNIST dataset,
but with the ‘Channel’ set to 3. Both the source and target datasets must have the same shape.

To create the ‘target’ MNIST dataset, do the same by setting the ‘Channel’ to 3, but also set the ‘Target
Overlay File’ to an image such as the standard 512x512 sized ‘LENA.JPG’ testing image found at
https://en.wikipedia.org/wiki/Lenna. Setting a target overlay file causes the MNIST dataset creator to
create the MNIST hand-written characters superimposed on top of the target overlay image.

Figure 3 Settings for Target MNIST Dataset

Once created your target dataset will be named ‘MNIST_Target.3_ch’ and look as follows:

Figure 4 Target MNIST Dataset

https://en.wikipedia.org/wiki/Lenna

11

CREATING THE CIFAR-10 DATASET

The CIFAR-10 dataset is a dataset of 50,000 32x32 images of 10 classes including cats, dogs, boats, cars,
etc. This section describes how to create the CIFAR-10 Dataset in the SignalPop AI Designer.

Before starting you will need to download the data file http://www.cs.toronto.edu/~kriz/cifar-10-
binary.tar.gz from Alex Krizhevsky’s website. Using a tool like 7-zip (http://www.7-zip.org/), this file
expands into a *.tar file which 7-zip expands into 6 *.bin files:

 data_batch_1.bin
 data_batch_2.bin
 data_batch_3.bin
 data_batch_4.bin
 data_batch_5.bin
 test_batch.bin

Once downloaded and expanded, the CIFAR-10 Dataset Creator will use these files to create the MNIST
Dataset.

Figure 5 Creating the CIFAR-10 Dataset

To create the CIFAR-10 Dataset, do the following:

1.) Double-click the CIFAR-10 Dataset Creator to open the CIFAR-10 Creator window.
2.) Next, add the CIFAR-10 *.bin files as shown above.
3.) Press the ‘Run’ () button to start creating the dataset.

http://www.cs.toronto.edu/%7Ekriz/cifar-10-binary.tar.gz
http://www.cs.toronto.edu/%7Ekriz/cifar-10-binary.tar.gz
http://www.7-zip.org/

12

CREATING AN IMAGE DATASET

The IMPORT.IMG dataset creator creates a dataset from a set of images located in a folder on your
computer. In the example below, we have imported a subset of the MNIST images, previously created
by exporting a portion of the MNIST dataset.

1

2

3

Figure 6 IMPORT.IMG Dataset Creator

To create a new dataset with this dataset creator, follow the steps below.

1.) Double click on the ‘IMPORT.IMG’ dataset creator name to open the ‘IMPORT.IMG’ dataset
status window.

2.) Set the ‘IMPORT.IMG’ properties to include the ‘Input Source Path’ which should be the
directory on your computer containing the images to import.

3.) Select the ‘Run’ button to start the import.

The properties of this dataset creator are as follows:

Operation IMPORTIMAGES – specifies to import the images.

Output Base Dataset Name Specifies the name of the new dataset to be created.

Output Base Dataset Source BOTH, TRAINING, TESTING – specifies which dataset
source to fill during the import (default = BOTH).

13

Input Source Path Specifies the directory containing the images to
import.

Output Training Percent Specifies a value between [0.0, 1.0] that determines
the percentage of images allotted to the training set
(e.g., a value of 0.8 = 80%).

Resize Size (HxW) When > 0, specifies the new size H x W of the images
output into the dataset. Default = 0, which ignores
resizing.

Crop Left When > 0, specifies the left starting point of the crop
in either pixels or percentage of the original image
width (before resizing). Default = 0, which ignores this
setting.

Crop Top When > 0, specifies the top starting point of the crop
in either pixels or percentage of the original image
height (before resizing). Default = 0, which ignores
this setting.

Crop Size (HxW) When > 0, specifies the size of the crop region in
either pixels or percentage of the original image width
and height (before resizing). Default = 0, which
ignores cropping.

Crop Unit PIXELS = crop left, top and sizing values specify pixel
values.

PERCENT = crop left, top and sizing values specify
percentage values.

By default, all images imported are given a label of -1. However, if you would like to import labeled
images, you can create a file named ‘_filelist.txt’ that contains the label information for each image.
The format of the ‘_filelist.txt’ file is as follows:

<image file path> <label>

The following is an example section of the ‘_filelist.txt’ file used to import the subset of MNIST images.

c:\temp\MNIST\img_000000.png 5
c:\temp\MNIST\img_000001.png 0
c:\temp\MNIST\img_000002.png 4
c:\temp\MNIST\img_000003.png 1
c:\temp\MNIST\img_000004.png 9
c:\temp\MNIST\img_000005.png 2
c:\temp\MNIST\img_000006.png 1
c:\temp\MNIST\img_000007.png 3
c:\temp\MNIST\img_000008.png 1

Once created, you will see the name of your new dataset residing under the IMPORT.IMG dataset
creator.

Figure 7 New 'MyDataset' dataset

14

VIEWING DATASETS

Once created, viewing datasets helps you understand what types of data you will be creating a model
for. For example, picture data can appear very different from heat-map data – both are images, but
you may want to use different models for these two different types of data. The CIFAR-10 dataset is
shown below.

Figure 8 Viewing Datasets

To view datasets installed within the SignalPop AI Designer, take the following steps:

1.) Select the ‘Datasets Creators’ tab.
2.) Expand a Dataset Creator within the ‘Dataset Creators’ pane and double-click the dataset that

you want to view, and it will appear in a new window.
3.) Double-click any image to enlarge.
4.) Training a project on a given dataset will create the image mean for the dataset. To view the

image mean, right click within the white space of the dataset view window and select the ‘Show
Image Mean’ menu item.

15

ANALYZING DATASETS

Once a dataset is created, analyzing it visually can provide helpful insights on how ‘learnable’ the
dataset actually is. The SignalPop AI Designer offers two types of visual dataset analysis: Iterative PCA
and t-SNE.

Figure 9 Dataset Visual Analysis

Select either the ‘Run PCA Analysis’ or ‘Run T-SNE Analysis’ at the bottom of the dataset window to
start either analysis.

16

ITERATIVE PCA ANALYSIS

The Iterative PCA Analysis uses an algorithm from [4] which leverages the speed of the underlying GPU
to calculate the PCA values in refining iterations.

Figure 10 Iterative PCA Parameters

The following parameters are available when calculating the Iterative PCA of the dataset.

Maximum number of PCA iterations: Specifies the number of iterations to run the iterative PCA
algorithm.

Number of principal components to display: Specifies the number of principal components that we
want to calculate.

Device ID: specifies the ID of the GPU to use.

Percentage of images to analyze: Specifies the percentage of images to analyze with the algorithm. If
you run out of memory, reduce this setting.

Use boosted data only: When set, only images that have a boost value are used.

Only use center of image (max 56x56): Specifies to only use up to 56x56 of the center of the image
when calculating the PCA.

Save images: Specifies to save the resulting images to file in the directory specified.

Background: Specifies the color of the background to use.

17

Figure 11 Iterative PCA Results

Upon completion, the images created for each PCA are shown in the ‘pca-<dataset>’ window.

18

T-SNE ANALYSIS

The t-SNE Analysis uses an algorithm from [5] that leverages the speed of the underlying GPU to
calculate the t-SNE animation.

Figure 12 t-SNE Parameters

The following parameters are available when calculating the t-SNE of the dataset.

Maximum number of PCA iterations: Specifies the number of iterations to run the iterative PCA
algorithm when ‘Apply PCA to data before t-SNE’ is checked for dimension reduction.

Maximum number of t-SNE iterations: Specifies the number of t-SNE iterations to run.

t-SNE theta: Specifies the theta value in the range [0, 1]. According to [6], the theta value “specifies
how coarse the Barnes-Hut approximation is”.

Number of principal components to display: Specifies the number of principal components that we
want to calculate when ‘Apply PCA to data before t-SNE’ is checked for dimension reduction.

Percentage of Nearest Neighbors to circle: When greater than zero, this specifies the percentage of
neighbors to consider when drawing the centroid circles around each classification.

Device ID: Specifies the ID of the GPU to use.

Percentage of images to analyze: Specifies the percentage of images to analyze with the algorithm. If
you run out of memory, reduce this setting.

19

Percentage of loaded images to seed t-SNE: Specifies the number of loaded images to use when
seeding the t-SNE algorithm.

Apply PCA to data before t-SNE: When selected, the PCA algorithm is run first and then the t-SNE is
run on the PCA results.

Calculate dataset rating value: When selected, the dataset ‘learnability’ rating value is calculated.

Use boosted data only: When set, only images that have a boost value are used.

Only use center of image (max 56x56): Specifies to only use up to 56x56 of the center of the image
when calculating the PCA and t-SNE.

Save images: Specifies to save the resulting images to file in the directory specified.

Background: Specifies the color of the background to use.

Figure 13 t-SNE Animation

While the t-SNE calculates, an animation of the results are shown in the ‘tsne-<dataset>’ window. The
final image shows the full data separation.

To see the specific images making up the animation, left click in the image and drag to select the points
to view and the images associated with each point will then be displayed in a new window along with
the % of images falling into each class within the region.

20

GYM DATASETS

Gym datasets are dynamic datasets that create new data on each iteration. For example, the Cart-Pole
[7] gym available in Python from OpenAI on GitHub [8] (originally copied from Rich Sutton et al. [9]
[10]), provides a simulation of a cart balancing a pole. Our C# version of the cart-pole simulation was
inspired by the OpenAI Python version.

Figure 14 Cart-Pole Gym

In our simulation, the cart (in light blue) moves left and right with the tan pole balanced on top of the
cart. Users of this simulation apply a force to the left and right of the cart to balance the pole.

Gyms are treated like any other data set with one main exception – gym datasets have no labels for
they dynamically create their data as the gym runs.

21

CREATING A GYM DATASES

The process of creating a gym dataset is no different from any other dataset. When creating a project,
selecting the dataset will show the Datasets Dialog.

Figure 15 Datasets Dialog

From this dialog you will see both datasets and gyms, where the gyms produce a dynamic dataset that
(other than its missing labels) look just like any other dataset.

22

PROJECTS

Projects are the basic unit used by the SignalPop AI Designer to manage each model and its associated
data. Each project contains a reference to the dataset used, the model description, the solver
description, and the trained model weights.

CREATING NEW PROJECTS

Creating a project associates the dataset used to the model and solver that will be trained on it.

Figure 16 Creating a Project

To create a project, do the following:

1.) Select the Solutions pane.
2.) Select the Add Project () button at the bottom of the pane.
3.) Fill out the ‘New Project’ dialog with the project name, and the model and solver to use.

Once added, you will see the new project appear in the Solutions pane.

23

PROJECT EDITING

Double-clicking the Model () name within a project displays the Model Editor window where you can
view the model visually, or in its text-script form.

Figure 17 Editing Projects

From the Model View Editor, you can easily edit the properties of each layer, add, and remove layers
and even visually configure layers.

To edit a model, do the following:

1.) Select the ‘Solutions’ tab and double click on the Model () name to open the Model Editor
window. NOTE: The model editor remains in a read-only mode when the project is open. To
edit, close the project first.

2.) From the Model Editor window, select a layer to see and edit its properties…
3.) …in the Properties window.

To better help you analyze your model, hovering the mouse over a selected layer
displays a tooltip with information describing the layer.

Figure 18 Layer Tooltip

24

VISUAL CONFIGURATION DIALOGS

Several layers, such as the Convolution and Pooling layers, support visual configuration dialogs.

Figure 19 Visual Configuration Dialog

Visual configuration dialogs allow you to visually set the kernel, stride and pad settings and show
visually how the settings will impact the way the layer uses its input Blobs.

25

TEXT VS GRAPHICAL EDITING

The Model Editor window supports both graphical and text editing.

Figure 20 Text and Graphical Editing

To switch between text and graphical editing, do the following:

1.) Select the ‘Model | View’ menu.
2.) Select ‘Text’ for text editing (shown above), or ‘Graphical’ for the graphical model view.

26

MODEL TOOLBOX

To build your model further, you can use the Model Toolbar window.

2 3

Drag-n-Drop

Figure 21 Model Toolbox Window

To add layers to your model, just drag and drop them from the toolbox window onto other existing
layers using the following steps:

1.) Select the new layer to add from the ‘Toolbox’ window.
2.) Drag the item over to and drop it onto an existing layer.
3.) Upon drop, the new layer will appear attached to the existing layer for which it was dropped.

After editing your model, pressing the Save () button then saves the updated model to your project.

27

LAYER UPDATES

Right clicking in the model edit window allows you to change settings that apply to all layers in the
model. When right clicking on a selected layer, these settings only apply to the selected layer.

Figure 22 Changing Model Settings

Right clicking on the model (when no layers are selected) allows you to change the following items for
each layer for which the settings apply:

• Set Engine; sets the engine used by each layer to DEFAULT, CUDNN or CAFFE.
• Set Activation; sets all activation layers to RELU, TANH, SIGMOID, PRELU or ELU.
• Set Weight Fillers; sets all weights fillers to UNIFORM, GAUSSIAN, XAVIER, MSRA, POSITIVE

UNIT BALL, or CONSTANT.
• Set Bias Fillers; sets all bias fillers to UNIFORM, GAUSSIAN, XAVIER, MSRA, POSITIVE UNIT

BALL, or CONSTANT.

Right clicking on a selected node allows you to quickly make these settings and immediately go to the
programming help for the node – just select the ‘Help’ menu item to go there.

Figure 23 Extensive Layer Help

28

HALF SIZED MEMORY

By default, the SignalPop AI Designer uses the float base type, which also allows you to further
optimize select layers to use half-sized memory. When using half-sized memory, the weights, top and
bottom blobs of the layer are configured to use the half-size type which is ½ the size of a floating-point
number. This does impact the precision of the layer but also reduces its memory footprint and can
improve training times.

To enable half-sized memory, simply right click on a layer and select the Enable Half Size menu option.
Once enabled, a small ‘half’ will appear on the layer graphic.

Figure 24 Half-Sized Memory

NOTE: when using half-sized memory, the precision of that layer will be reduced to a 2-byte floating
point number which can cause the model to blow up with an infinity or NaN loss. When this occurs, try
reducing the scaling of the input data.

Currently half-sized memory is available on the CONVOLUTION, POOLING, RELU, TANH, and
SIGMOID layers when run with the CUDNN engine and the INPUT layer.

29

FREEZING LEARNING

During the learning process, you may want to freeze the learning in each layer. When a layer is frozen,
training proceeds in the normal manner yet the weight updates are not applied to any frozen layer. To
freeze a layer either edit its properties or select the Freeze Layer on Up option to freeze the layer and all
its predecessors.

Figure 25 Freezing Learning

When frozen, a small ‘frozen’ is displayed on the layer graphic.

Layer freezing can be very helpful when performing transfer learning (e.g., importing a pre-trained
model and fine tuning the end layers to the problem at hand).

30

OPENING PROJECTS

When working with a project, you must first ‘open’ the project which loads the dataset into memory,
creates the model scaffolding and then loads any trained weights into the model used.

Figure 26 Opening a Project

To open a project, do the following:

1.) First select the project so that its properties show in the ‘Properties’ pane.
2.) Set the properties to use for the project, including the ‘GPU Override’ which specifies the GPU

on which to open the project. In addition, make sure to select the ‘Image Load Method’. When
opening a project you can choose to ‘LOAD_ON_DEMAND’ which loads the images into
memory as needed (and caches them), ‘LOAD_ALL’ which loads all images into memory before
using them (which dramatically improves training speeds), ‘LOAD_FROM_SERVICE’ which
provides the best of both options, where by the images are loaded and retained in memory by
the SignalPop In-Memory Database Service, or LOAD_ON_DEMAND_BACKGROUND which
does not wait for all images to load, but starts loading them into memory in the background
while returning the image requested2.

2 The LOAD_ON_DEMAND_BACKGROUND option is only available in the MyCaffe Image Database version 2.

31

3.) Next, right click on the project and select the ‘Open’ menu item to open the project.

Once open, the project name will appear in bold with a green light attached.

NOTE: The database icon in the lower right-hand side of the Project Window, displays the % for which the
in-memory database is loaded. Optimal speeds are reached only after the database is fully loaded.

PROJECT SETTINGS

Before opening a project, you will want to set the configuration under which the project is to be
opened. This section describes these settings and how they impact the project opened.

Figure 27 Project Settings

The following project settings impact how the project behaves when it is opened.

Snapshot Update Method; there are three types of snapshot update methods: FAVOR_ACCURACY
which favors triggering snapshots when the accuracy improves (increases), FAVOR_ERROR which
favors triggering snapshots when the error improves (decreases), and FAVOR_BOTH which favors
triggering a snapshot when either improve.

Snapshot Load Method; the snapshot load method is used when loading the weights into the project
as it is opened. There are three snapshot load methods: BEST_ACCURACY which loads the last
snapshot with the best accuracy, BEST_ERROR which loads the last snapshot with the best error, and
LAST_STATE which loads the last snapshot taken.

GpuOverride; the GPU override specifies the GPU ID(s) on which to train, test and run the project. GPU
IDs are zero bases and increase up to one minus the number of GPUs that you have installed. Multi-
GPU training is supported on headless GPU’s (the GPU’s that do not have a monitor plugged into
them). Both TCC and WDM mode multi-GPU training are supported, by you will want to make sure
that all GPU’s used in the multi-GPU training are set to the same mode (i.e., either all set to TCC, or all
set to WDM). See the nvidia-smi documentation for more information on setting the GPU mode.

http://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf

32

Reset Device Before Opening Project; enabling this setting resets the GPU used before opening the
project. IMPORTANT: This setting is ONLY recommended when testing as it will wipe the GPU and
can disrupt other software using the GPU.

Image Load Method; as described previously, there are three image loads methods:
1.) LOAD_ON_DEMAND; Loads the images as they are used (which is slower),
2.) LOAD_ALL; Loads all images into memory before using (faster training, slower load),
3.) LOAD_FROM_SERVICE; Uses the SignalPop In-Memory Database Service to load the images (faster
training and faster load once loaded).
4.) LOAD_ON_DEMAND_BACKGROUND; Loads the images as they are used while simultaneously
starts loading all the images in the background3.
5.) LOAD_ON_DEMAND_NOCACHE; Loads the images as they are used and does not cache the images
which uses less memory but is slower4.

Enable Label Balancing; when enabled, the images are selected first by randomly selecting the label
and then selecting the image from the label selected. Using this setting with datasets that have uneven
data across classes can help balance the classes presented to the network and thus make training more
accurate. When datasets have balanced data across classes (i.e., CIFAR-10 or MNIST), this setting is not
needed.

Enable Random Selection; when enabled, the images are randomly selected from the dataset, or from
the label set selected if label balancing is enabled. When disabled, images are selected sequentially
which is not recommended for training.

Enable Pair Selection; when enabled, the first image is selected using the ‘Enable Random Selection’
setting and the second image query selects the image immediately following (in sequence) the first
image selected.

Superboost Probability; this is a value within the range [0, 1] that specifies the probability that an
image is selected from the ‘boosted’ set of images if any exist where a value of 1 = 100%. Boosted
images are images marked with a boost value set via the Dataset Viewer window. To increase the
boost value of an image, left click on the image while holding down the ALT key. To reset all boost
values, select the Reset All Boosts () button.

3 The LOAD_ON_DEMAND_BACKGROUND option is only available in the MyCaffe Image Database version 2.
4 The LOAD_ON_DEMAND_NOCACHE option is only available in the MyCaffe Image Database version 2.

33

IMAGE LOADING – LOAD_FROM_SERVICE CONFIGURATION

When using the LOAD_FROM_SERVICE image loading, the SignalPop AI Designer uses the SignalPop
In-Memory Database Windows Service. To configure the service, you must make sure that the ‘LogOn
As’ account used has access to your database – otherwise the service will fault when attempting to load
images from the database.

By default, the ‘LogOn As’ account was set when you installed the SignalPop AI Designer. However, if
you need to change this account, simply do the following:

1.) Open the ‘Services’ Configuration Window by selecting the ‘Administrative Tools’ from the
Control Panel, and then select the ‘Services’ administrative tool.

2.) From within the ‘Services’ Configuration Window, scroll down to the ‘SignalPop In-Memory
Database Service’ and double click it.

3.) Select the ‘Log On’ tab and configure the account that you would like the Service to use.
4.) Completely stop the service and then start to make sure that any connections to the previously

run service are killed. A service restart does not always do this.

Next, make sure that your DNN database gives this account access to both ‘Connect’ and ‘Select’ for
the SignalPop In-Memory Database only reads from the database. To do this, simply do the following:

1.) Open the ‘SQL Server Management Studio’.
2.) Open the main, root-level ‘Security | Logins’ tab and make sure that your account has log-in

access.
3.) Next, right click the ‘DNN’ database and select ‘Properties’ and then click the ‘Permissions’

page from the left panel.
4.) On the ‘Permissions’ add your account and grant ‘Connect’ and ‘Select’ access to your account.

SQL DATABASE ACCOUNT

When accessing a SQL database from a Service, the account used must be granted special access on
the SQL database.

The account you use must be granted the following generate ‘Securables’ found by right clicking on the
username within the ‘Security|Logins’ tree and selecting the Properties menu item. The following
securables must be granted for the machine on which the user is associated:

Connect SQL

View any definition

Next, from the ‘Databases|DNN’ database tree, select the Properties menu and then select the
Permissions page. Select the user account and grant the following permissions:

Connect

34

TRAINING AND TESTING PROJECTS

After opening a project, you are now ready to train and test it. Double clicking on the open project
name opens the Project window.

Figure 28 Training and Testing Projects

To train or test a project, do the following:

1.) Double-click the project name (of an open project) to open the Project window.

2.) At the bottom of the Project window select the Run Training () or Run Testing () buttons to
start training or testing.

When testing, there are three types of testing that are available:

• Default; runs the default MyCaffe testing pass which also runs during training to calculate the
accuracy of the model.

• Test Many; selects images at random from the testing set and runs them through the model in
the same way any other outside image is run through the model and tallies up the results.

• Create Results; runs each of the training images through the model and saves the results in the
database – this last type of training can be used to build higher level bagged results sets that
combine the results of several models into higher level models.

35

During training, the results of the training process are shown in the graphical ‘Project’ window.

Figure 29 Training a Project

While running, the project window visually shows the progress of the training via the graph of the (1)
error, (2) accuracy, calculated on each test pass, and (3) the network and MyCaffe throughput shown in
milliseconds. In addition, the (4) ‘Properties’ pane shows the properties under which the training is
taking place.

Several buttons at the bottom of the ‘Project’ window allow you to further control the training process:

 Stop; the stop button halts the training (or testing) process.

 Force Snapshot; the force snapshot button forces a snapshot at the current position of training.
Normally, snapshots automatically occur based on the settings within the solver description, and when
the accuracy increases.

 Force Testing; the force testing button forces a testing cycle to take place. Normally, the testing
cycle frequency is determined by the settings within the solver description.

 View Model; the view model button opens the model editor for visual viewing of the model. Note,
when a project is open, selecting the ‘Inspect Layer’ from several of the layers displays a visualization of
the layer’s internals (weights, etc.). See Model Editing for more information on the model editor.

 View Solver; the view solver button opens the solver editor for visual viewing of the solver.

36

 Show Learning Rate; the show learning rate button toggles between the ‘Learning Rate’ graph and
‘Throughput’ graph.

 Blob Debugging; the debugging button, when pressed, enables debugging by sending debug
information to the ‘Debug’ windowpane. See the section on Debugging for more information.

 Break on first NaN; enabling the NaN breakpoint causes the model to immediately stop training
upon detecting the first NaN or infinity value (e.g., model blow-up). This setting is only available when
the ‘Blob Debugging’ is enabled. See the section on Debugging for more information.

 Enable Single Step; enabling the single-step feature causes the model to run a single iteration and
stop which can be helpful when debugging.

Accuracy View; checking the ‘Accuracy View’ toggles the scaling of the error and accuracy graphs
between the error scale and accuracy scale as the accuracy values are only calculated on each test cycle.

37

SCHEDULING PROJECTS

In some situations, the designer may want to schedule a project so that is available for training on a
different machine. For example, say you have two development machines; one that you actively develop
on and another that you use for testing – scheduling a project makes the project available for training by
the SignalPop Universal Miner™ that runs on the test machine thus freeing up the GPU on your
development machine for other tasks.

Development
Machine

SignalPop
AI

Designer

SQLEXPRESSS
(training data)

SQL
(scheduling)

Testing
 Machine

SignalPop
Universal

Miner

SignalPop AI
Server

MyCaffe

MyCaffe
In-Memory Db

TCP Port 1433

2 3

4

5

6

1

8

8
7

Figure 30 Scheduling Projects

When scheduling a project, the following steps take place.

1.) First the designer uses the SignalPop AI Designer™ on the Development Machine to create the
dataset and the work-package data (model and solver descriptors) which are stored on the local
copy of Microsoft SQLEXPRESS, running on the same machine as the SignalPop AI Designer
application. To allow instances of MyCaffe running on the remote Test Machine to access the
database, the designer must open access to port 1433 and create a database user account that
has read-only access rights to the database on the local machine. Update access rights are only
made available on the work package results table.

2.) Next, the designer schedules a project by adding a new work package to the work package
scheduling database. The work package contains encrypted data describing the location of the
dataset and work package data used by the remote Testing Machine to build the model and
access the dataset during training.

38

3.) Next, when the SignalPop Universal Miner™ running on the remote Testing Machine notices
the newly scheduled project, the scheduled project is assigned to the SignalPop Universal
Miner software on the Testing Machine.

4.) Upon being assigned to the project, the SignalPop Universal Miner on the remote Testing
Machine uses the SignalPop AI Server™ to load the work package data and use it to open and
train the project.

5.) The SignalPop AI Server on the remote Testing Machine creates an instance of MyCaffe and
loads the project into it.

6.) In addition, the SignalPop AI Server on the Testing Machine creates an instance of the MyCaffe
In-Memory Database and sets the connection credentials to those specified in the scheduled
work package thus allowing the MyCaffe In-Memory Database to access the dataset residing on
the designer’s Development Machine (or in some other location specified by the designer). This
communication takes place over SQL port 1433.

7.) After the training of the model completes, the SignalPop Universal Miner™ software on the
Testing Machine saves the weights and state back to the developer’s Development Machine
and then marks the project as completed in the scheduling database.

8.) Back on the designer’s Development Machine, when the SignalPop AI Designer™ detects that
the project is done, the project is displayed as completed with results. At this point the designer
may copy the scheduled results from their local work packages results table into the projects
local results residing on the local SQLEXPRESS instance used by the SignalPop AI Designer.

The example above shows how the designer can off-load the training to the testing machine thus
freeing the designer to work with their local resources on other tasks.

39

ADDING A PROJECT TO THE SCHEDULE

To schedule a project, right click on the project name within the Solutions Window and select the
‘Schedule | Add menu item, which will display the Schedule Project dialog.

Figure 31 Scheduling a Project

From this dialog you can select the type of task to run, the target resource to use and the dataset
location information.

Task Type; currently only the Training task is supported which when run trains the scheduled project.

Target Resource; the target resource defines the type of GPU for which you would like to run the
schedule project. Different GPU types can vary in price depending on the resources they have.

40

Dataset Location; the dataset location specifies all information needed by the remote SignalPop
Universal Miner™ to connect to the dataset for which the model is to be trained. Note, all dataset location
information is encrypted before sending or storing in the scheduling database.

 Server; specifies the machine name or URL of the server where the database resides.

 Database; specifies the name of the database, typically ‘DNN’.

 Username; specifies the SQL username that has read-only access to the database.

 Password; specifies the SQL password for the SQL user.

Work Package Data Location; the work package data location specifies all information needed by the
remote SignalPop Universal Miner™ to connect to the database containing the work package data (e.g.,
model descriptor and solver descriptor) and work package results. Note, all dataset location information
is encrypted before sending or storing in the scheduling database. When loading a project, any existing
weights and state within the work package results are loaded into the project. And once training is
completed, or stopped, the current weights and state are saved back into the work package results table.

 Server; specifies the machine name or URL of the server where the database resides.

 Database; specifies the name of the database, typically ‘DNN’.

 Username; specifies the SQL username that has read-only access to the database.

 Password; specifies the SQL password for the SQL user.

Select the ‘same as dataset’ button to use the same connection settings for both the dataset and work
package data.

SETTING UP SECURE DATABASE ACCESS

Before the SignalPop Universal Miner™ can train a model from a different machine using the data
residing in your local SQL (or SQL Express) database, you must give the SignalPop Universal Miner secure
access to the database. This section describes how to do just that.

Setting up secure access involves two main steps: 1.) Setting up SQL and 2.) Setting up a SQL user that
has read-only access rights to your training database.

41

SETTING UP SQL

To setup SQL for remote access, you will need to take the following steps.

1.) First run the Sql Server Configuration Manager located at
 c:\WINDOWS\SysWOW64\SQLServerManager14.msc

2.) From within the SQL Server Configuration Manager, select and expand the ‘SQL Server Network
Configuration’ item, and then select the ‘Protocols for MSSQLSERVER’ or ‘Protocols for
SQLEXPRESS’ depending on the type of instance you are using.

3.) Make sure the ‘TCP/IP’ protocol is enabled.
4.) Next, double click on the ‘TCP/IP’ protocol and select the ‘IP Addresses’ tab. Make sure that the

TCP Port setting is set to 1433 for each network for which you intend to access the database
and make sure that the last IPAll setting has its TCP Port set to 1433.

5.) As a final step, re-start the SQL Server (or SQL Express) instance that you are using and make
sure that the SQL Server Browser is running and set to Automatic startup. You may have to
perform this latter step from the ‘Services’ window that starts by entering ‘Services’ in the
Windows Startup Search window.

Next, you will need to configure the Windows Firewall to open port 1433. The following steps show how
to make this configuration.

1.) From the start search window (lower left side of the Windows-10 screen) enter ‘Windows
Firewall’ and run ‘Windows Defender Firewall’.

2.) From the Windows Defender Firewall, select the ‘Advanced settings’.
3.) Right click the ‘Inbound Rules’ and select ‘New Rule’.
4.) For the rule type select ‘Port’ and select the ‘Next’ button.
5.) Select ‘TCP’ as the port type and enter the ‘Specific local ports:’ as 1433 and select the ‘Next’

button.
6.) Select ‘Allow the connection’ and select the ‘Next’ button.
7.) Select how the rule is to apply (e.g., ‘Private’ only for local use) and select the ‘Next’ button.
8.) Give the rule a name such as ‘SQL Server’ and select the ‘Finish’ button to complete adding the

new rule.

You can now access SQL on port 1433 over the network for which you allowed the rule to apply (e.g.,
‘Private’ for your internal network).

Next, you will need to create a SQL user and give them read-only access to your database.

42

SETTING UP SQL USER

To set up a SQL user, open the Microsoft SQL Server Management Studio and follow the steps below.

1.) To create a new user, select the ‘Security | Logins’ tab in the ‘Object Explorer’.
2.) Right-click on the ‘Logins’ item and select ‘New Login’.
3.) From the ‘Login-New’ dialog, enter the new ‘Login name’, select the ‘SQL Server

authentication’ option and enter in the password for the new user.
4.) Press ‘OK’ to add the new user.
5.) Double click on the new user now listed under the ‘Logins’ item.
6.) From the ‘Login Properties’ dialog, select the ‘Server Roles’ item and grant access to both the

‘public’ and ‘bulkadmin’ Server roles.
7.) From the same dialog, select the ‘User Mapping’ item and check the ‘DNN’ database, and

check the database role membership ‘public’ and ‘db_datareader’.
8.) Press ‘OK’ to accept the changes.
9.) Next, right click on the ‘WorkPackageData’ table and select the ‘Permissions’ tab. Grant

INSERT, DELETE, and SELECT on this table for your new SQL user account.
10.) Next, right click on the ‘WorkPackageResults’ table and select the ‘Permissions’ tab. Grant

INSERT, DELETE, and UPDATE on this table for your new SQL user account.
11.) Next, expand the ‘Databases | DNN | Programmability | Stored Procedures’ item and right click on

the ‘dbo.GetRawData’ stored procedure. If this item does not appear, you must install, run,
and connect to the database with the SignalPop AI Designer.

12.) From the ‘Stored Procedure Properties’ dialog select the ‘Permissions’ item and search for and
select the new user that you previously added, and grant ‘Execute’ permission.

IMPORTANT: For remote users to access your database securely, you must enable both SQL Server
and Windows Authentication mode so that they can access the DNN database. Using the Microsoft
SQL Server Management Studio, right click on your database server and select ‘Properties’. To enable
this, from the ‘Server Properties’ dialog, select the ‘Security’ tab and make sure to check the ‘SQL Server
and Windows Authentication mode’ radio button. To test your new user’s access rights, connect to your
database server using the SQL Server Management Studio and your new user’s name and password.

Your database and machine are now ready to allow the SignalPop Universal Miner to train your local
projects on a remote machine.

43

For a simple example, we will use the new username ‘joe’ with the password ‘new*test99’ who was
added to your local machine named ‘TEST’. To schedule a project in a way that allows a remote Signal
Universal Miner to train the project, you will want to use the following scheduling settings.

Figure 32 Sample Configuration Settings

After pressing OK, this information is encrypted and stored along with the project model descriptor,
solver descriptor and trained weights (if any exists) in the scheduling database. When an external
instance of the SignalPop Universal Miner is assigned the project, it decrypts the dataset location
information and starts training the project with MyCaffe and the MyCaffe In-Memory database. During
training, the MyCaffe In-Memory database loads the dataset information into memory from the location
pointed to by the dataset location information that you configured when scheduling the project.

To learn more about the SignalPop Universal Miner™, see the SignalPop Universal Miner Getting
Started Guide.

https://www.signalpop.com/wp-content/uploads/2018/07/Universal-Mining-Getting-Started.pdf
https://www.signalpop.com/wp-content/uploads/2018/07/Universal-Mining-Getting-Started.pdf

44

SETTING THE SCHEDULING DATABASE

The scheduling database is initially set to ‘NONE’ which disables the work package scheduling. To
change this setting, select the ‘File | Settings’ menu from the SignalPop AI Designer and change the
‘SchedulingDatabaseServer’ setting under ‘Scheduling’. To enable work package scheduling, enter the
specific scheduling database server information as follows: ‘server;database;username;password’.
Before saving this information, it is encrypted.

For example, to connect to the server ‘MYMACHINE’ with database ‘DNN’ and database user name ‘joe’
and password ‘password’, you would enter ‘MYMACHINE;DNN;joe;password’.

NOTE: The SQL user used to access the scheduling database, must be given ‘Execute’ privileges on
both the ‘QueryAndAssignWorkPackages’ and ‘DeleteWorkPackages’ stored procedures.

In addition, the SQL user must be granted the following access on the tables below:

Table Access Rights Needed

WorkPackages INSERT, SELECT, UPDATE

WorkPackageParameters INSERT, SELECT, UPDATE

WorkPackageCommands INSERT, SELECT, UPDATE, DELETE

IMPORTANT: When setting a machine up with the Scheduling Database, your machine must be visible
to other machines. For example, to make the machine visible on your private network, you will need to
set your ‘Network Profile’ to ‘Private’. To do this, set the connection properties of your internet
connection by selecting the ‘Windows Settings | Network & Internet’ settings. Next, select the ‘Change
connection properties’ link and change your ‘Network profile’ to ‘Private’.

See the previous section on setting up secure database access for more details.

45

SCHEDULING STATES

When using scheduled project, the state of the scheduled project is reflected in the project icon and
follow the state transitions as shown below.

Not
Scheduled Scheduled Deployed

Running

Aborted
-or-

Done

Error

Results

Figure 33 Scheduling State Transitions

Once scheduled, a project displays one of several special icons as described below.

Icon Meaning

Unscheduled project

Scheduled project – the project is in the
database ready to be assigned.

Scheduled and assigned project – the project
has been assigned to a miner.

46

Scheduled and assigned running project –
the project has been assigned to a miner and
the miner is running the project.

Scheduled and assigned project in an error
state – the project has been assigned to a
miner; the miner attempted to run the
project, but an error occurred.

Scheduled project is done (or aborted) and
has no results pending.

Scheduled project is done and has results
pending.

After a scheduled project is completed successfully, the results are stored in the scheduling database
where the designer can opt to copy the results over to their local database. The following project icon
indicates that schedules results are ready to copy.

To copy the results over to the local database (replacing the existing local results), select the ‘Schedule |
Copy to Local’ menu item. After the results are copied, the scheduled project is deleted, and the project
icon changes back to the normal project icon.

47

IMPORTING AND EXPORTING

When working with AI models you may want to share your models with others and/or use models
trained by others. Importing and exporting helps you do just that. There are several ways to import
and export models and model descriptions that are discussed in the following sections.

IMPORTING A PROJECT

Importing a project involves creating a new project from an existing Solver Descriptor, Model
Descriptor and Model weight file. To import a new project, select the ‘File | Import’ menu item which
displays the ‘Import Project’ dialog show below.

Figure 34 Import Project Dialog

From this dialog, enter the new project name and select the prototxt files for both the Solver and Model
where the prototxt files use the native Caffe format. In addition, you can select a weight file that is
either a ‘mycaffemodel’ or ‘caffemodel’ file format. And finally, select the Dataset to use with your
project and add the new project.

48

Note: To import an ONNX (*.onnx) model file, just enter the *.onnx file name in the ‘Model Description
Field’ and it will be automatically converted into a model description and weights file that are then
imported into your project.

Note: When importing a project, the following model fields are changed on the imported model:

transform_param
{
 crop_size: if greater than image size, changed to image size, otherwise unchanged.
 mean_file: if exists, removed but use_imagedb_mean added and set to True.
 use_imagedb_mean: True (if mean_file exists with a value).
 color_order: BGR (if a caffemodel is imported), RGB otherwise.
}
data_param
{
 source: set to dataset source name for TRAIN or TEST phase.
 backend: changed to IMAGEDB.
}

IMPORTING PRE-TRAINED MODELS

To import already pre-trained models, select the ‘Get Public Models’ button in the upper right corner of
the Import Project dialog.

Figure 35 Public Models Dialog

From this dialog, select the public model that you would like to import, download it by selecting the
‘Download’ button and then select OK.

Note: When importing ONNX models, the downloaded *.onnx file is automatically converted into a model
description file and weight file that are then imported into your project.

49

IMPORTING WEIGHTS

After opening a project, you can import the weights (or a portion of the weights) of an already trained
model that matches (or closely) matches the project.

Figure 36 Import Weights Dialog

To import new weights into a project, do the following:

1.) Open the project.
2.) Right click on the ‘Accuracy’ () sub-tree item and select the ‘Import’ menu item which

displays the ‘Import Weights’ dialog shown above.
3.) If you want to save the imported weights (like a snapshot), select the ‘Save’ check box.

Otherwise, when unselected, the weights are just loaded into memory.
4.) Also, if you want to import on a blob-by-blob basis, select the ‘Load Details’ button which

expands the dialog and allows you to select each blob to import. The blobs imported must
match the blob size for which they are imported. By default, all matching blobs are imported.

5.) After selecting OK, the weights are imported into the open project.

IMPORTANT: Native Caffe uses a ‘B’lue-‘G’reen-‘R’ed (BGR) color ordering whereas most images use the
‘R’ed-‘G’reen-‘B’lue (RGB) ordering. When importing native Caffe models, you will want to make sure that
each DataLayer within your model is set to use the BGR color ordering as shown below.

Figure 37 Setting BGR Color Ordering

To set the BGR ordering, do the following:

1.) Close your project and open the model in the model editor.
2.) Select each DATA layer as shown above.
3.) Change the ‘color_order’ property to BGR for all DATA layers and save the project.

50

IMPORTING WEIGHTS FOR TRANSFER LEARNING

In some cases, you may only want to import only a portion of a trained model to accommodate for
different sizing or to only import initial layers.

To import only a portion of a trained model (e.g., for Transfer Learning), select the ‘Show Details’
button and the weights for the file to be imported and for the target model are displayed side-by-side.

Figure 38 Weight Details Dialog

The blob sizes are automatically selected when the sizes match. Check the blobs that you want to
import and select OK to add them to your model.

51

EXPORTING PROJECTS

You can also export project descriptors and weights. Weights are exported in the ‘mycaffemodel’ file
format which uses the same Google ProtoBuf binary file format and organization as that of native
Caffe. The main difference between the ‘mycaffemodel’ file format and that of the ‘caffemodel’ format
is that MyCaffe adds extra MyCaffe specific data after all the native Caffe data.

To export descriptors for the solver or model, do the following:

1.) From the ‘Solutions’ pane, right click the Model () sub-tree item or the Solver () sub-tree
item and select the ‘Export’ menu item.

2.) When exporting a Solver, select the ‘Export | Solver’ menu item.
3.) When exporting a Model, you can export either the train/test model by selecting the ‘Export |

Train/Test Model’ menu item, or a deploy model by selecting the ‘Export | Deploy Model’ menu
item.

To export models, do the following:

1.) Right click the ‘Accuracy’ () sub-tree item and select the ‘Export | Weights’ menu item.

To export the entire project (e.g., model description, solver description and weights), right click on the
project name itself and select the ‘Export’ menu item.

Figure 39 Export Project Dialog

The ‘Export Project’ dialog allows you to export to either a folder or over SFTP to a remote target. In
addition, projects can be exported in the MyCaffe or ONNX formats.

Note, when exporting in the ONNX format, only the model description and weights are exported into
the resulting *.onnx file.

52

EXPORTING TO DOCKER

We now support exporting both projects and datasets to your Docker containers! This section walks
you through the steps necessary to do the export.

DOCKER SETUP

Before exporting to your Docker container, you will want to perform a few initial setup steps to
configure a Docker volume that is shared between your native Caffe Docker Container and an SFTP
server such as the one made available by atmoz/sftp (available on Docker Hub).

Once you have your SFTP server pulled and ready to go, you will want to run the following Docker
commands to configure it.

First, we need to create a Docker volume that will be shared between the SFTP server and the native
Caffe Docker container. The following command will create a new volume named ‘mycaffe-vol’.

Next, we need to create the SFTP Docker container – the following commands will start it up.

What this command does is start the SFTP server running with the ‘mycaffe-vol’ volume mapped to the
‘/home/signalpop/mycaffe’ directory within the SFTP server. In addition, the port 2222 is mapped to the
server’s port 22 (sftp port) and the user ‘signalpop’ is logged in with the password ‘password’. Files are
then uploaded to the ‘/home/signalpop/mycaffe/files’ directory within the SFTP server.

You will want to change the password for security reasons.

IMPORTANT: Make sure to use the same username and password set on the SFTP server here when
you export SignalPop projects and datasets to your Docker container. We will get to that later, but for
now, remember this username, the password and the Port used.

Next, we need to start the native Caffe Docker container. The following command will start the native
Caffe Docker container made available by nvidia/caffe (available on Docker Hub).

$ docker volume create mycaffe-vol

$ Docker container run –v mycaffe-vol:/home/signalpop/mycaffe –p
2222:22 –d atmoz/sftp signalpop:password:1001::mycaffe/files

https://hub.docker.com/r/atmoz/sftp/
https://hub.docker.com/r/nvidia/caffe/

53

What this command does is start the ‘nvidia/caffe’ image in interactive mode (-it option) with the
volume ‘mycaffe-vol’ mapped to the ‘/workspace/mycaffe’ directory within the Caffe container.

When you enter the Caffe container and run the ‘ls’ command from the ‘/workspace’ directory, you will
see a new directory called ‘mycaffe’. This is where all exported files will be placed as discussed below.

All datasets exported from the SignalPop AI Designer are placed into the directory
‘/workspace/mycaffe/files/data’ where a subdirectory exists for each dataset exported. Each dataset has
two more subdirectories, one for all training images and another for all test images. Currently, datasets
are exported as PNG images and are exported along with a _filelist.txt that contains a listing of pairings
where each line in the file lists the file path followed by the label of the file. In addition, a _info.txt file is
exported that describes the image sizes (h x w x c) and the number of images in each set. Use the
‘caffe-master/tools/convert_imageset.cpp’ tool to convert the images into the LMDB database used by
the native Caffe in your Caffe container.

All projects exported from the SignalPop AI Designer are placed into the directory
‘/workspace/mycaffe/files/models’ where a subdirectory exists for each project exported. For each
project exported, the trained weights are placed in the *. caffemodel file, and the model and solver
description files are placed in a ‘train_test.prototxt’ and ‘solver.prototxt’ files respectively.

The file structure used by the SignalPop AI Designer on the native Caffe container is as follows:

Native Caffe model descriptors use the ‘/workspace’ directory as the root for the sources referenced for
training and testing. Each project exported by the SignalPop AI Designer, changes the training and
testing sources to match this structure but also adds ‘/lmdb’ to the end of each source within the model
description, with the anticipation that the dataset will be converted into an LMDB database within this
directory.

$ docker container run –it –v mycaffe-vol:/workspace/mycaffe
nvidia/caffe

/workspace
 /mycaffe
 /files
 /data
 <your exported dataset name>
 /train
 /test
 /models
 <your exported project name>

54

EXPORTING DATASETS TO DOCKER

To export a dataset to your Docker container (setup as described above), first right-click on the dataset
within the Dataset Creators window to display the ‘Export Dataset’ dialog.

Figure 40 Export Dataset Dialog

Next, select the ‘Export to remote site (using SFTP)’ radio button and fill out the fields as follows:

IP Address: set this to the IP address where your SFTP Docker container is running.

Port: set the Port to the port that you mapped to port 22 above with the –P option when starting up the
SFTP server.

Username: enter the username specified when starting the SFTP server.

Password: enter the password specified when starting the SFTP server.

Root Path (on server): for now, just leave this set to ‘/mycaffe/files’ which is also set when starting up
the SFTP server.

Next with your Docker SFTP server running, press the Start Export button and a new ‘Dataset Creator’
window will appear and show the status of the export. Once completed, your files will be on the native
Caffe Docker container ready to use!

In the example above where we exported the MNIST dataset, you can find these files in the following
directories on your native Caffe Docker container:

/workspace/mycaffe/files/data/MNIST/train – training mnist data files.
/workspace/mycaffe/files/data/MNIST/test – testing mnist data files.

As mentioned above, to complete the process, run the ‘caffe-master/tools/convert_imageset.cpp’ tool to
convert each directory into an LMDB.

As a final note, when uploading a dataset, an image mean file named ‘mean.png’ is also uploaded to the
training directory.

55

EXPORTING PROJECTS TO DOCKER

To export a project to your Docker container (setup as described above), go to the ‘Solutions’ window
and right click on the unopened project that you want to export. Right click on the project to display
the ‘Export Project’ dialog.

Figure 41 Export Project Dialog

The steps are very similar to exporting a dataset. Again, you will select the radio button to ‘Export to
remote site (using SFTP)’ and fill out the IP Address, Port, Username and Password. Next with your
Docker SFTP server running, press the ‘Export’ button and the project is exported to your Docker
container.

In the example above, the export places the files in the following directory on the Docker container:

/workspace/mycaffe/files/models/MNIST

Within this directory you will see the following three files:

train_test.prototxt – this is your model descriptor file.
solver.prototxt – this is your solver descriptor file.
model.caffemodel – these are your trained weights, trained in MyCaffe, yet native Caffe compatible.

The ‘train_test.prototxt’ file has both train and test sources pointing to the
‘mycaffe/files/data/MNIST/train/lmdb’ and ‘mycaffe/files/data/MNIST/train/lmdb’ directories.

56

CUSTOM TRAINERS

Custom trainers provide a way to train existing MyCaffe models in a recurrent and/or reinforcement
manner. The MyCaffe Dual trainer offers recurrent and reinforcement training. When using a custom
trainer, the training, testing, and running functions are performed by the custom trainer which then
takes care of feeding data into the model based on the training method used. Typically, a Gym is used
as the data source with a custom trainer.

Each custom trainer is set up through the properties of the solver.

Figure 42 Custom Trainer Settings

The Dual.Trainer is a MyCaffe trainer that supports both recurrent and reinforcement learning.
Depending on the trainer type used, the Dual.Trainer sets the MyCaffe model stage to either ‘RNN’ for
recurrent learning or ‘RL’ for reinforcement learning. With these stages, each model can then activate
each layer used during each stage.

57

CUSTOM TRAINER SETTINGS - TRAINERS

Currently the following trainer types are supported:

RNN.SIMPLE This trainer is used for recurrent training and when run sets the MyCaffe stage to
‘RNN’.

PG.MT This trainer provides a multi-threaded policy gradient reinforcement training and
when run sets the MyCaffe stage to ‘RL’.

PG.ST This trainer provides a single threaded policy gradient reinforcement training and
when run sets the MyCaffe stage to ‘RL’.

PG.SIMPLE This trainer provides a very simple policy gradient reinforcement training and
when run test the MyCaffe stage to ‘RL’.

DQN.SIMPLE This trainer provides a simple DQN implementation derived from the Google
Dopamine DQNAgent5 licensed under the Apache 2.0 License.

DQN.ST This trainer provides a single threaded DQN implementation derived from the
Google Dopamine DQNAgent6 licensed under the Apache 2.0 License.

C51.ST This trainer provides a single threaded C51 (Rainbow) implementation derived
from the Google Dopamine RainbowAgent7 licensed under the Apache 2.0
License.

CUSTOM TRAINER SETTINGS - PROPERTIES

Depending on the trainer used, there are various additional custom trainer settings that apply.

Property Description

TrainerType RNN.SIMPLE – use the RNN trainer with the RNN stage.

PG.MT – use the multi-threaded policy gradient reinforcement
learning trainer with the RL stage.

PG.ST – use the single-threaded policy gradient reinforcement
learning trainer with the RL stage.

DQN.SIMPLE – use the simple DQN reinforcement learning
trainer with the RL stage.

5 See https://github.com/google/dopamine/blob/master/dopamine/agents/dqn/dqn_agent.py
6 See https://github.com/google/dopamine/blob/master/dopamine/agents/dqn/dqn_agent.py
7 See https://github.com/google/dopamine/blob/master/dopamine/agents/rainbow/rainbow_agent.py

https://github.com/google/dopamine/blob/master/dopamine/agents/dqn/dqn_agent.py
https://github.com/google/dopamine/blob/master/dopamine/agents/dqn/dqn_agent.py
https://github.com/google/dopamine/blob/master/dopamine/agents/rainbow/rainbow_agent.py

58

DQN.ST – use the single threaded DQN reinforcement
learning trainer with the RL stage.

Threads [PG.MT trainer only]

Specifies the number of threads to run for multiple training
sessions.

GPUIDs [PG.MT trainer only]

Specifies which GPU’s to use per thread.

RewardType VAL (or VALUE) – display the actual reward value as the
reward.

MAX – display the maximum reward received.

Gamma [PG.MT, PG.ST, DQN.SIMPLE, DQN.ST trainers only]

Default Value = 0.99

Specifies the discount rate used for past rewards.

MiniBatch [PG.MT, DNQ.SIMPLE, and DNQ.ST trainers only]

Default Value = batch setting from project or 10

Specifies the override (if any) for the mini-batch which defines
how often the accumulated gradients are applied. This setting
is useful with Recurrent models that use a batch size of 1 for
the MiniBatchOverride can then define how often the gradients
are applied thus operating as though batching is in use.

UseAcceleratedTraining [PG.MT, PG.ST, DQN.SIMPLE, DQN.ST trainers only]

Default Value = True

Specifies whether to use accelerated training. When enabled,
gradient changes are applied twice to accelerate the areas
where the gradient is changing. Accelerated training only
applies when MiniBatch > 1

AllowDiscountReset [PG.MT, PG.ST trainers only]

Default Value = False

Specifies whether to recent the discount values are reset
during accumulation or accumulated.

Preprocess Default Value = True

Specifies whether to preprocess the data into 1 and 0 values.

ActionForceGray Default Value = False

Specifies whether to force the action values into a single
channel of data.

UseRawInput Default Value = True

59

Specifies whether to use the input values directly (true) or to
use the difference between the current value and the previous
value (false).

EpsStart [PG.MT trainer only]

Specifies the starting exploration rate used to randomly select
actions. For example, a value of 0.1 directs the trainer to
randomly select the action 10% of the time.

EpsEnd [PG.MT trainer only]

Specifies the ending exploration rate.

EpsSteps [PG.MT trainer only]

Specifies the number of steps to use the exploration rate
which starts at the EpsStart rate and decreased over the steps
to the EpsEnd rate.

SequenceLength [RNN.SIMPLE trainer only]

Specifies the length of the data sequence fed into the
recurrent model.

Lookahead [RNN.SIMPLE trainer only]

Specifies the length of sequence to look into the future. The
full sequence length = SequenceLength + Lookahead.

VocabularySize [RNN.SIMPLE trainer only]

Specifies the number of vocabulary buckets to use. Data
values are fit into a set of buckets that span a given data range.
Character values are each fit into their own bucket whereas
numeric values are fit into the bucket that has a matching
value range. For example, when using numeric values, a value
of 0.12 is placed in the bucket with data value range [0.0, 0.5].

VocabularyMin [RNN.SIMPLE trainer only]

Specifies the minimum value of the data range spanning all
buckets. Each bucket fills the range between the
VocabularyMin and VocabularyMax. For example, if the
VocabularyMin = -1.0 and the VocabularyMax = 1.0 a
VocabularySize = 4 will produce four buckets with the
following data ranges:

[-1.0, -0.5], [-0.5,0.0],[0.0,0.5],[0.5,1.0]

Note, when data values exceed the end bucket ranges, the
values are placed within those buckets. With the example
above a value of -2 is placed in the first bucket whereas a value
of 3 is placed in the last bucket.

VocabularyMax [RNN.SIMPLE trainer only]

60

Specifies the maximum value of the data range spanning all
buckets.

LastLabelOnly [RNN.SIMPLE trainer only]

Specifies that only the last label is used in the sequence,
instead of the entire past and future sequence.

FrameSkip [ATARI Gym]

Specifies the frame skip to apply, where 1 = no frame skip.

AllowNegativeRewards [ATARI Gym]

When true, negative rewards are returned after our player
misses the ball.

TerminateOnRallyEnd [ATARI Gym]

Specifies to give a terminate state on the end of a rally as
opposed to the end of a game.

61

DEBUGGING

When developing models, often it is important to understand what is occurring within the model. This is
especially true when your model blows up and you are trying to figure out why. The debugging tools of
the SignalPop AI Designer are provided to help you better understand what your model is doing.

There are four types of debugging tools provided by the SignalPop AI Designer: Real-time,
Visualizations, Evaluators and Hardware diagnostic tools. The following sections discuss each of these
in more detail.

REAL-TIME

Selecting the ‘Blob Debugging’ () button from a ‘Project’ window that is training a model, causes the
data flowing through the model to also display in the ‘Debug’ window.

Figure 43 Real-time Debugging

To enable the real-time debugging to do the following:

1.) Select the ‘Blob Debugging’ () button while training and the data values flowing through the
network will also be displayed in the ‘Debug’ window as they flow through the network.

62

Note, selecting the ‘Break on first NaN’ () button causes the network to immediately stop training
upon detecting the first NaN or Infinity value which means the model most likely blew up.

After stopping the training session, with the ‘Debug’ window still open, you can further analyze the
Blob values of each layer by right clicking on each within the ‘Debug’ window. The debug window
allows you to view each Blob’s contents as a Histogram or as an Image for both the Data and Diff
portions of the Blob.

HISTOGRAM BLOB VISUALIZATION

The histogram Blob visualization shows the histogram created from the values within the Blob thus
giving you a better idea of where the data values reside in the overall Min/Max data range of the Blob.

Figure 44 Blob Histogram Visualization

To view the Blob Histogram Visualization, do the following:

1.) Stop the training session with the ‘Blob Debugging’ enabled, and right click on the Blob that
you want to visualize.

2.) Select the ‘Data Histogram’ visualization to view the Data portion of the Blob (selecting the Diff
Histogram visualizes the Diff portion of the Blob).

3.) View the histogram of the Data portion of the Blob in the histogram window.

63

IMAGE BLOB VISUALIZATION

The image Blob visualization shows the image created by converting each value within the blob to a
coloring that makes up the Blob image. This type of information can tell you where data values drop
out when driven to zero, etc.

Figure 45 Blob Image Visualization

To view the Blob Image Visualization, do the following:

1.) Stop the training session with the ‘Blob Debugging’ enabled, and right click on the Blob that
you want to visualize.

2.) Select the ‘Data Image’ visualization to view the Data portion of the Blob (selecting the Diff
Image visualizes the Diff portion of the Blob).

3.) View the image of the Data portion of the Blob in the image window.

The enhanced image Blob visualization is like the image Blob visualization, but each color is enhanced
to hopefully bring out more information that helps better understand the network internals.

64

MODEL DEBUGGING

When developing a model, it is often helpful to visualize the actual data that flows from one layer to
another. The Blob Data Debugging window allows you to do just that. To use the Blob Data debugging
feature, first open your project as described in Opening Projects. Next, open the model editor by
double clicking on the model’s name as described in the Project Editing section, above. At this point the
project is read-only, but layers and links are now live and can be inspected.

INSPECTING LINKS

To view the blob data that travels between layers, first select the link that you want to inspect by
clicking on it. Selected links are highlighted in light green. Next, left mouse click and select the ‘Inspect
Link Data’ to view the blob data, or select the ‘Inspect Link Diff’ to view the blob diff.

Figure 46 Blob Data Debugging

The actual blob data (or diff) contents are then displayed in the Data debugging window to the right of
the editor.

When viewing the model of an open project, the ‘Step Training’ () and ‘Step Testing’ () buttons
appear in the lower right section of the model editor – these buttons allow you to single step through
the training or testing of the model so that you can then easily inspect a link or layer again to see the
new impact of the step made.

65

INSPECTING LAYERS

To inspect the layer itself, click on the layer to be inspected to select it and then right click to open the
layer’s context menu and select ‘Inspect Layer’. Not all layer’s support inspection, but those that do
have the ‘Inspect Layer’ menu item.

Figure 47 Inspecting a Layer

When inspecting a layer, the layer contents are shown visually in a separate window as shown above.

Using the layer and link inspection tools can dramatically help you diagnose issues within your network
and do so with live data.

66

VISUALIZATIONS

Visualizations allow you to see the insides of the network by viewing its data and weights and viewing
the impact of the network on a given input to see which portions of the input have the highest impact
on the detected label.

WEIGHT VISUALIZATION

The weight visualization draws the weights (of each layer that has learnable parameters) as an image
allowing you to visually see whether the network is learning features or not. For example, the ‘conv1’
layer of the ConvAlexNet model shows visually that it has learned patterns of edges and other simple
features 8.

Figure 48 Visualizing the Network Weights

To view the Weight Visualization, do the following:

1.) Double click the ‘Accuracy’ project item from the ‘Solutions’ pane.
2.) Select the ‘Run weights visualization’ () button.

8 The model shown was imported from the ImageNet AlexNet model trained by Berkeley and found on GitHub at
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet.

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

67

NETWORK VISUALIZATION

In addition to just visualizing the network weights, selecting the ‘Run network visualization’ () button
visualizes the entire network when running a single image.

Figure 49 Visualizing the Network

Visualizing the network shows the results of a given image when moved through the network along
with the weights (as shown in the previous section).

With this view you can see which neurons fire given the various weight features discovered.

68

LABEL IMPACT VISUALIZATION

The label impact visualizations take a different approach to visualization in that they attempt to show
which areas of a given image trigger the detected label. When creating the label impact, we use an
algorithm inspired by [11] where the network is run repeatedly on the same image where on each run a
small window blocks out a portion of the image to see which portions of the image have a higher
impact on the network end result.

Figure 50 Labe Impact Visualization

In the first row of the label impact visualization, we block out a portion of the image with a small black
window.

In the second row we take the opposite approach and run only a small portion of the image through the
network with the remaining portion of the image set to back.

To run the label impact visualization, select the ‘Run label visualization’ () button.

69

EVALUATORS

Evaluators are plug-ins that give you different views of each network. Some are for debugging and
some are for artistic fun.

IMAGE EVALUATION

Image evaluation runs the network in reverse and displays the results for each layer thus allowing you
to see where the network has difficulty learning. The image evaluation uses the deconvolution and
unpooling algorithm inspired by [11].

Figure 51 Image Evaluator

To run the image evaluator 9, do the following:

1.) Right click an open project and select ‘Evaluate’.
2.) Select the ‘Image’ Evaluator.
3.) Run the evaluator by pressing the ‘Run’ () button.

NOTE: Image evaluation is not supported on projects that use a gym dataset.

9 The model shown above was imported from the ImageNet AlexNet model trained by Berkeley and found on GitHub at
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

70

DREAM EVALUATION

The ‘Dream’ evaluator runs the Deep Dream [12] algorithm which allows you to see what the network
sees when detecting one label or another.

Figure 52 Deep Dream Evaluator

To run the deep dream evaluator 10, do the following:

1.) Right click an open project and select ‘Evaluate’.
2.) Select the ‘Dream’ Evaluator.
3.) Add several (or all) of the labels that the network detects into the ‘Focus Labels’ field.
4.) Run the evaluator by pressing the ‘Run’ () button.

NOTE: Dream evaluation is not supported on projects that use a gym dataset.

10 The model shown above was imported from the ImageNet AlexNet model trained by Berkeley and found on GitHub at
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

71

NEURAL STYLE TRANSFER EVALUATION

The ‘Neural Style Image’ evaluator runs the ‘Neural Style Transfer’ [13] algorithm to learn the style
provided by one image and applies it to another ‘content’ image.

Figure 53 Neural Style Transfer

To run the Neural Style Transfer evaluator, just follow the steps below.

1.) Create a project using the VGG19 model as described by [14] using an arbitrary dataset.
2.) Open the project with the ‘LOAD_ON-DEMAND’ image load method.
3.) Once open, right click on the project and select the Evaluate menu item.
4.) From the Project Evaluators dialog, select the ‘Neural Style Image Evaluator’.
5.) Select the User Image and Style Image and press the ‘Run’ () button to start the style transfer.
6.) Images will appear in the main window on each Intermediate iteration, or upon completion.
7.) Double-click any image to enlarge to its original size.
8.) Right clicking on the image allows you to save it.

72

WHAT NEURAL STYLE TRANSFER DOES

In the example above, use learn the style of Edvard Munch’s The Scream11 and applied that style to a
public domain image of a train bridge12 provided by www.pexels.com under the CC0 license.

Selecting Edvard Munch’s, The Scream as the style image tells the application to learn the style of his
painting and then apply that style to the content features of the train bridge picture.

STYLE CONTENT RESULT

The same process works for any style and content image combination. To demonstrate this, we use the
same content image as above, but this time apply Van Gogh’s Starry Night13 style to it.

STYLE CONTENT RESULT

As a final example, we apply Claude Monet’s Water Lilies 191614 to the same content image.

STYLE CONTENT RESULT

11 The Scream by Edvard Munch is available to the public domain at https://commons.wikimedia.org/wiki/File:The_Scream.jpg.
12 The train bridge photo is provided by www.pexels.com at https://www.pexels.com/photo/bridge-clouds-forest-guidance-461772/ under the
CC0 Licenses with the original source of Pixabay.
13 Starry Night by Vincent van Gogh is available to the public domain at https://commons.wikimedia.org/wiki/File:VanGogh-starry_night.jpg.
14 Water Lilies 1916 by Claude Monet is available to the public domain at https://commons.wikimedia.org/wiki/File:Monet_Water_Lilies_1916.jpg.

http://www.pexels.com/
https://commons.wikimedia.org/wiki/File:The_Scream.jpg
http://www.pexels.com/
https://www.pexels.com/photo/bridge-clouds-forest-guidance-461772/
https://commons.wikimedia.org/wiki/File:VanGogh-starry_night.jpg
https://commons.wikimedia.org/wiki/File:Monet_Water_Lilies_1916.jpg

73

NEURAL STYLE SETTINGS

The following settings allow you to alter how the neural style transfer progresses.

Solver; several solvers are available, however we have found the LBFGS to work the best. Selecting each
solver automatically sets the other settings to the best defaults for that solver.

Learning Rate; specifies the learning rate to use with the solver. If your learning rate is too low or high
your model may blow up with NaN or infinity.

Max image size; specifies the maximum image size used for input and output. Images input to the
system are scaled and resized using this setting if they exceed the maximum size specified.

Iterations; specifies the number of iterations to run when learning the style of the style image.

Immediate; specifies whether to output immediate images and at what iteration interval. For example
if your iterations are set at 1000 and the immediate value is set at 100, the style transfer will run for 1000
iterations and output an immediate image at iterations 100, 200, 300, …, and 1000.

Gpu ID; specifies the GPU on which to run the style transfer. Typically, this is the GPU for which the
project was opened. However, if you run out of memory when using the main GPU and are running a
multi-GPU system, specifying a secondary GPU ID causes the neural style transfer to run on that
secondary GPU and not on the one for which the project was opened.

LBGFS Correction; specifies the number of LBFGS corrections to use. A smaller number uses less
memory but also slows down the style transfer process. If you run out of memory when performing a
style transfer, first try reducing this setting. This setting only applies when using the LBFGS solver.

Single image; specifies to transfer the style from one style image to one content image.

Run against all style images; specifies to transfer the style from all images in the directory for which the
style image resides against a single content image.

Run against all content images; specifies to transfer the style of one style image against all content
images in the directory for which the user image resides.

NOTE: Some of the settings may have limited functionality in the general product release and require
purchasing the Extended Neural Style Transfer feature to unlock the full power of the neural style transfer.

74

LAYER SETTINGS

Changing the layer settings allows you to alter how the style features (learned from the style image)
and how the content features (learned from the content image) are applied to the resulting image.

Figure 54 Layer Settings

When enabled, double clicking on each of the layers allows you to alter the weights for both style
and/or content for that layer.

In addition, pressing the Set Default () button resets the weights back to their defaults and pressing

the Use style only () button sets the defaults to only use style weights (e.g., no content weights).

NOTE: Some of the settings may have limited functionality in the general product release and require
purchasing the Extended Neural Style Transfer feature to unlock the full power of the neural style transfer.

NEURAL STYLE LIMITATIONS

The following neural style limitations apply when running the SignalPop AI Designer in different modes.

 DEMO General Full Neural Style

Max Image Size 220 pixels 440 pixels Unlimited

Multi-GPU NO YES YES

Multi-Style Images NO NO YES

Multi-Content Images NO NO YES

Layer Weight Editing NO YES YES

Solver Editing NO YES YES

Learning Rate Editing NO YES YES

Intermediate Output NO YES YES

Image Saving NO YES YES

Maximum Iterations 200 Unlimited Unlimited

75

HARDWARE

When using the SignalPop AI Designer it is important to see how your hardware is performing and what
portions of the hardware are in use. Four views give better insights on how the hardware GPUs are
being used: The ‘Processors’ resource window, the ‘Project’ window throughput graph, the Real-time
debug timing, and the ‘Memory Test’ window.

PROCESSOR RESOURCE WINDOW

The ‘Processor’ window shows which GPUs are installed within your computer, and the current settings
and usage of each GPU.

Figure 55 Processors Window

This window lets you know the following information about each GPU in your computer:

• The number of GPU’s installed and the model’s name of each.
• The amount of total memory of each GPU.
• The current mode that the GPU is running in (TCC - ‘P2P on’ or WDM – ‘P2P off’)
• The amount of free GPU memory.
• The current usage as a % of total GPU processor usage.
• The GPU(s) with Monitors attached.

76

PROJECT THROUGHPUT

The throughput graph in the ‘Project’ window shows the timing on each cycle of the model as it is being
trained. Both the MyCaffe low-level throughput for each forward + backward pass and the overall
network throughput at the application level are plotted in milliseconds.

Figure 56 Throughput Graph

Note, at the bottom of the throughput graph are plotted small red/yellow points where a system
garbage collection was detected.

REAL-TIME DEBUG TIMING

To help further diagnose bottlenecks in the system, the real-time ‘Debug’ window shows the timing of
the forward and backward pass for each layer thus helping pinpoint where a network slows down during
training.

Figure 57 Layer Timings in the Debug Window

Note, excessive times are highlighted in yellow.

77

MEMORY TESTER

The memory tester runs a memory test across all (or a portion of) the memory in each GPU. This test
can be helpful in determining whether your hardware is functioning as expected.

Figure 58 Memory Testing

To run the memory test, do the following:

1.) First, right click on the GPU within the ‘Processors’ window that you want to test, which will
display the ‘Memory Test’ window for that GPU.

2.) Next, select the ‘Start’ () button, in the Memory Test window, to start the memory test.

78

EXAMPLE MODELS

This section provides the step-by-step process of setting specific more complicated models using the
SignalPop AI Designer.

DOMAIN-ADVERSARIAL NEURAL NETWORKS (DANN)

The Domain-Adversarial Neural Network (DANN) is an adversarial network inspired by [3] with the goal
of learning domain adaptation where the source and target domains differ.

DATASETS

We can simulate an environment using the MNIST dataset, where a 3-channel version of the standard
MNIST dataset is used as the ‘source’ dataset.

Figure 59 MNIST ‘source’ Dataset

The 3-channel ‘source’ MNIST dataset has two data sources: MNIST.training.3_ch and
MNIST.testing.3_ch.

And a version of the MNIST dataset that is superimposed on another image (e.g., simulating an
environment) is used as the ‘target’ dataset.

Figure 60 MNIST 'target' Dataset

Both datasets are easily created using the SignalPop AI Designer’s MNIST Dataset Creator. See section
Creating the MNIST ‘source’ and ‘target’ Datasets above for details on creating these datasets.

The 3-channel ‘target’ MNIST dataset has two data sources: MNIST_Target.training.3_ch and
MNIST_Target.testing.3_ch.

Once the datasets are created, we are ready to create the model.

79

DANN MODEL

To create the DANN model, we must create the model and add the new ‘target’ MNIST dataset to it.
The following steps will guide you through creating this model.

1.) First, select the ‘Solutions’ tab in the SignalPop AI Designer.
2.) Select the Add Project () button at the bottom of the pane.
3.) Fill out the ‘New Project’ dialog with the project name, the MNIST dataset, and the DANN

model and solver templates as shown below.

Figure 61 New Project Dialog

4.) After pressing OK, you will see the new DANN project added to the Solutions window.
5.) To add the ‘target’ dataset, select the ‘MNIST_Target.3_ch’ dataset from the Datasets pane

within the Resources window and drag-n-drop it onto the DANN project.

Figure 62 Drag-n-drop the Target Dataset

6.) Upon dropping the dataset, you will be presented with the ‘Drop Dataset Action’ dialog. From
this dialog, select the ‘Add this dataset to the ‘target’ dataset’ radio button.

7.) After pressing OK, the DANN project updates with the new dataset listing both the source
MNIST.3_ch and target MNIST_Target.3_ch datasets.

At this point, you are ready to open and train your model just like any other model. See the section
Opening Projects above to open your new project, and see section Training and Testing Projects above
to start testing your model.

80

FULL MODEL

The DANN network is made up of two neural networks
that are averse to one another. The first, main network
is a regular convolutional network that learns the
pattern of the source domain.

Bottleneck layer that links both networks together

And the second network learns the target domain and
operates adversely to the first network via the
GRADIENTSCALE ‘grl1’ layer shown to the right

The gradient scaler layer is a gradient reversing layer
introduced by [3]. The reversed gradients are then
added back into the bottleneck layer shown above.

81

VALIDATING THE DANN MODEL

Once you have trained your model for around 10,000 iterations you should see an accuracy of around
80% or greater. The example below was run on an NVIDIA TITAN X (Maxwell). The next step is to run
the model on a validation set of data.

Figure 63 Model Training

The next step is to validate your model by running it against the training data source of the
MNIST_Target.3_ch data source.

Figure 64 Validating Your Model

82

To validate your model, follow these steps:

1.) First select the ‘Test Many’ radio button at the bottom of the Project window.

2.) Next, select the ‘Run Testing’ button () to start the test run. After starting the test run, the
‘Select Dataset for Testing’ dialog will appear. From this dialog, select the ‘Target Dataset’ to
run the model on images randomly selected from the MNIST_Target.3_ch dataset.

3.) Upon completing the test run, which runs 1000 images through the model, the statistics for the
run appear in the output window and show the accuracy of the model on the ‘target’ data set.

83

DEEP AUTO-ENCODER NETWORKS

In addition to data compression and dimension reduction tasks, auto-encoders provide an unsupervised
learning method often used to pre-train deep neural networks [15]. The auto-encoder uses an encoding-
decoding method that learns the input features by learning to re-create the input data. Our auto-encoder
models were inspired by [16] where we have modified the original model by adding Batch Normalization
layers to help stabilize the data flowing through the network and better reproduce the input data set. In
this section, we will walk through the steps necessary to re-create both the deep convolution auto
encoder and the deep convolution with pooling auto encoder models.

DATASETS

Both models discussed in this section use the 1-channel MNIST dataset shown below.

Figure 65 MNIST ‘source’ Dataset

To create the MNIST dataset see the section Creating the MNIST Dataset above.

AUTO-ENCODER MODEL

To create the Auto-Encoder model, we must add a new project to the Solutions window. The following
steps will guide you through creating this model.

1.) First, select the ‘Solutions’ tab in the SignalPop AI Designer.
2.) Select the Add Project () button at the bottom of the pane.
3.) Fill out the ‘New Project’ dialog with the project name, the MNIST dataset, and either the Auto

Encoder, or Auto Encoder Pool model and solver templates as shown below.

Figure 66 New Project Dialog

4.) After pressing OK, you will see the new AutoEnc project added to the Solutions window.

84

FULL MODEL

To view your new model, expand the new ‘AutoEnc’ project and double click on its ‘AutoEncNet’ sub-
tree item. When opened in the model editor, the auto-encoders will look as follows:

Deep Convolution Auto-Encoder Deep Convolution Auto-Encoder with Pooling

For the full details on viewing your new model see the section Opening Projects above to open your
new project, and see section Training and Testing Projects above to start testing your model.

85

MODEL ANALYSIS

When training, visualizing the model’s internals can be helpful in determining whether you are on the
right track. The SignalPop AI Designer has many helpful visualization tools for this purpose – we will
use three of these tools here to show how well the model works.

LAYER INSPECTION

Auto-encoders are trained by using the model to re-create the input. Using the layer inspection
visualization on the last layer, we can see how well the model does this recreation.

To inspect the output layer data, follow the steps below.

1.) First train your model up through around 1000 iterations using the steps described in section
Training and Testing Projects.

2.) Next, open the model editor as described above, and make sure that the model itself is loaded
and in the ‘Open’ state as described in section Opening Projects.

3.) From within the model editor, scroll down to the bottom of the model and select the ‘bn5’
node. As shown below, you will see that this node produces a batch of 128, single channel
28x28 outputs – which are the images re-created by the model.

Figure 67 Node Selection

4.) Right click on the selected ‘bn5’ node and select the ‘Inspect Layer’ menu item, which opens a
window containing a visualization of the data in that layer. As shown below, the ‘bn5’ layer
clearly re-creates the MNIST data images.

Figure 68 Visualizing the 'bn5' layer.

86

DATA INSPECTION

Sometimes your training may not go as expected and never converge to a solution. In such cases
visualizing the last layer may show all black images or all white, washed-out images. This occurs when
your model ‘blows-up’ by either driving the gradients to very small or very large numbers.

Inspecting the data flowing between layers can be a helpful tool that helps you hunt down the source of
the model blow-up.

To inspect a data link, follow the steps below.

1.) As discussed in the previous section, first train your model up through around 1000 iterations
using the steps described in section Training and Testing Projects.

2.) Next, open the model editor as described above, and make sure that the model itself is loaded
and in the ‘Open’ state as described in section Opening Projects.

3.) From within the model editor, scroll down to the bottom of the model and select the line
connecting the ‘bn5’ node to the Sigmoid Cross Entropy ‘loss’ layer – when selected, the line will
highlight bright green and display the size of the data flowing between the two layers which in
this case will read ‘bn5 -> (128, 1, 28, 28)’.

Figure 69 Selecting a Data Link

4.) Next, select the ‘Inspect Single Items’ () button at the bottom of the model editor – this
button is only displayed when the project is in the ‘Open’ state.

5.) Now, right-click on the selected link and select the ‘Inspect Data Link’ menu item which will
send the data flowing between the ‘bn5’ and ‘loss’ layer to the Data window ().

Figure 70 Data Window

87

ENCODING SEPARATION

Once you can stabilize your training, you will also want to verify that your model learns an encoding that
has good data separation.

To view the encoding data separation, we will use the Debug Layer, which is attached to the ‘ip2encode’
Inner Product Layer – our encoding layer.

Figure 71 Using the Debug Layer

During training, the Debug Layer merely stores the outputs of the attached layer (e.g., the ‘ip2encode’
layer in this case) in a revolving buffer.

When inspecting the Debug Layer, we run the T-SNE [5] algorithm to visualize the data separation of the
items output by the layer being debugged. In this case, the T-SNE algorithm is run on our embedding
which visually shows how well the encoding works.

After first selecting ‘Inspect Layer’ you will be presented with the ‘t-SNE’ settings dialog.

Figure 72 t-SNE Settings Dialog

See the T-SNE Settings Section above for more information on this dialog.

88

The process will animate while the solution is found to the t-SNE data separation. Once complete, you
can visually inspect the data separation of the embedding itself.

Figure 73 T-SNE Data Separation

At this point your model is ready to use as a pre-trained set of weights used to accelerate the training of
a network that uses the nodes at least up through the ‘ip2encode’ layer.

89

USING PRE-TRAINED AUTO-ENCODER

After training the ‘AutoEncPool’ project, you can use the trained weights to pre-train a classifier. To do
this, first copy the ‘AutoEncPool’ project, by right clicking on the project in the ‘Solutions’ pane and
selecting the ‘Copy’ menu item. When copying you do not need to copy the weights for, we will re-import
them.

Load the newly copied project’s model description into the model editor (e.g., double-click on the
‘AutoEncPoolNet’ sub-tree item of the newly copied project named ‘AutoEncPool2’). Remove all layers
below the ‘ip2encode’ layer and make the as shown below.

Figure 74 Converting Auto-encoder Model.

After removing the layers below the ‘ip2encode’ layer, we will add back a 10 output INNER PRODUCT
layer after the ‘ip2encode’ layer along with the standard SOFTMAXWITH_LOSS and ACCURACY layers
used for classification problems.

The new INNER PRODUCT layer can use the Xavier weight filler, and Constant (0.2) bias filler.

NOTE: If you do not want to fiddle around with copying and editing a project, you can merely just create a
new project and use the ‘AutoEncoderPoolRun_28x28 (Model)’ and associated solver.

90

The complete model should then look as follows.

Figure 75 Complete Classifier Model

91

IMPORTING AUTO ENCODER WEIGHTS

Next, you will want to import the weights up through the encoding layer into your new classifying
model shown in the previous section.

First, we need to export the weights from your original ‘AutoEncPool’ model. To do this, follow the
steps below.

1.) Expand the ‘AutoEncPool’ project in the ‘Solutions’ tree view.
2.) Right-click on the ‘Accuracy’ sub-tree item from the model and select the ‘Export | Weights’

menu item.
3.) Save the weights to a file of your choosing. In our example, we have saved the weights to the

file ‘C:\Users\win\Pictures\temp.mycaffemodel’.

Next, we need to import the weights into your newly copied model ‘AutoEncPool2’. To do this, follow
the steps below.

1.) First, open the newly copied ‘AutoEncPool2’ model by right clicking on it and selecting the
‘Open’ menu item.

2.) Next, right-click on the ‘Accuracy’ sub-tree item within the ‘AutoEncPool2’ model and select
the ‘Import’ menu item which will display the dialog below.

Figure 76 Weight Import Dialog

3.) All matching blobs will be checked when opening the dialog as only matching blob sizes can be
imported. Make sure to check the ‘Save’ check box to save the weights into your new project
and press ‘OK’ to import the weights.

92

TRAINING COMPARISON

Now that you have the pre-trained weights imported, you are ready to train your classifier network.
When training you should see the accuracy jump up to around 97% within 3000 iterations.

Figure 77 Pre-trained Network Performance

At this point you may want to stop training and run a simple test on a set of 1000 images selected
randomly from within your test set. In our test, the ‘Test Many’ had an accuracy of 86.9%.

93

How does the pre-trained network compare to one that was not pre-trained? The following training
was performed with the standard random weight initialization.

Figure 78 Non-Pre-Trained Network Performance

Like the pre-trained network, the non-pre-trained network reaches 90%+ accuracy but does so after
10,000 iterations as opposed to the 3,000 iterations of the pre-trained network. This clearly shows that
pre-training can dramatically help reduce the training time.

94

SIAMESE NETWORK WITH CONTRASTIVE LOSS FOR ONE-SHOT LEARNING

In this example, we show how to create, train and use a Siamese Net to learn hand written character
classification using the MNIST dataset similar to [17] and [18]. The Siamese Net provides the ability to
perform ‘One-Shot’ learning where an image that the network has never seen before, is quickly matched
with already learned classifications if such a match exists. For several examples of one-shot learning, see
[19] who use a Siamese Net for image retrieval, [20] who use a Siamese Net for content based retrieval,
and [21] who use a Siamese Net to detect railway assets such as switches on the railway track.

DATASETS

The Siamese Net discussed in this section uses the 1-channel MNIST dataset shown below.

Figure 79 MNIST ‘source’ Dataset

To create the MNIST dataset see the section Creating the MNIST Dataset above.

SIAMESE NET MODEL

To create the Siamese model, we must add a new project to the Solutions window. The following steps
will guide you through creating this model.

1.) First, select the ‘Solutions’ tab in the SignalPop AI Designer.
2.) Select the Add Project () button at the bottom of the pane.
3.) Fill out the ‘New Project’ dialog with the project name, the MNIST dataset and the

Siamese_28x28 model and solver templates as shown below.

Figure 80 New Project Dialog

4.) After pressing OK, you will see the new SiameseTest project added to the Solutions window.

95

FULL MODEL

To view your new model, expand the new ‘SiameseTest’ project and double click on its ‘SiameseNet’
sub-tree item. When opened in the model editor, the auto-encoders will look as follows:

For the full details on viewing your new model see the section Opening Projects above to open your
new project, and see section Training and Testing Projects above to start testing your model.

96

As shown above, the Siamese Net comprises two separate, matching networks (on the left, and on the
right) that both share the same weights. During training and testing, the DataLayer is configured to pack
two images per channel which are then separated using the Slice layer into ‘data’ and ‘data_p’. The ‘data’
images are fed to the left network and the ‘data_p’ are fed to the right.

Figure 81 Siamese Data Layer

 The ‘images_per_blob’ DataLayer setting directs the data layer to load two images per channel. With
the ‘balance_matches’ setting = True, images are loaded alternating between two images that are of the
same class, and two images that are from two different classes. By balancing the matching and non-
matching pairs, the network can learn the correct distance (small when images are the same, large when
they are different) using the ContrastiveLoss layer. Also, note that each DataLayer is configured with
‘output_all_labels’ = True. The ‘output_all_labels’ directs the DataLayer to output each image’s label in
the same order that the images are packed into the channels. When false, the DataLayer just outputs
the similarity of the two images where a value of ‘1’ signifies that the images are of the same class and a
value of ‘0’ signifies that the images are of different classes.

Note, the model uses different phases where the two parallel networks are only both loaded during the
TRAIN and TEST phases, whereas only a single network (the left network) is loaded during the RUN phase.

The following sections describe the difference between each phase.

97

TRAINING AND TESTING PHASE

During the training phase, both the left and right networks output the learned encoding for each input
image (originally split into the two images using the SliceLayer and fed into each network as described
above). These two encodings are fed into the ContrastiveLoss layer along with the label of each Image
(or the similarity value).

Figure 82 Siamese Net Training and Testing Phase

The ContrastiveLoss layer then calculates the distance between the two encodings and calculates the
loss where the loss is set to the squared distance between the two images when they are from the same
class, and the squared difference between the margin and the distance when they are from different
classes, which moves the image encodings toward one another when they are from the same class and
further apart when they are not.

The DecodeLayer, later used when running the net in the RUN phase, must also run during the training
phase, for while training, this layer calculates the encoding centroid of all classes. The encoding centroid
is then stored in the DecodeLayer’s learned parameters for later use during the RUN phase.

During the TEST phase, the encoding, and labels from the first net are fed into the AccuracyEncoding
Layer which calculates the class based on the encoding centroid of each class.

98

RUN PHASE

During the RUN phase, only one image is loaded into a single network (just the left side) which then
produces the image’s encoding. The image encoding is then fed into the DecodeLayer which calculates
the distances of the encoding each class encoding centroid learned during the TRAIN phase.

Figure 83 Siamese Net Run Phase

The DecodeLayer outputs the distances much in the same way that a SoftMax output probabilities,
except in this case the smallest distance signifies the label whereas with a SoftMax the maximum
probability signifies the label.

When using a one-shot learning application, each image is fed into the network which then produces a
set of distances. If a very low distance is observed for a given class, then that class is determined to be
the matching class. However, if no low distance is observed for any class, then the image is determined
to NOT be in any of the classes.

99

TRAINING AND TESTING

Training and testing are performed in the same manner used with other models as described in section
Training and Testing Projects above.

Figure 84 Training a Siamese net.

To test your model, select the ‘Test Many’ radio button and then press the ‘Test’ button. Once
completed, the accuracy per label is output as follows.

Figure 85 Testing a Siamese Net

100

POLICY GRADIENT REINFORCEMENT LEARNING

In this example, we will show how to use policy gradient-based reinforcement learning inspired by Andrej
Karpathy [22] [23], to solve the Cart-Pole gym.

During training, each step of the Cart-Pole gym is run repeatedly until a failure occurs, which in Cart-Pole
occurs if the angle of the pole exceeds +/- 20 degrees, or the cart runs off the track to the right or left.

Figure 86 Cart-Pole Gym

The following sections discuss how to create and train the project.

DATASETS

The cart-pole datasets produce a dynamic set of data where on each step, four data items are
produced:

1.) The position of the cart.
2.) The acceleration of the cart.
3.) The position of the pole (radians)
4.) And the acceleration of the pole.

This information is then used by the model along with the MyCaffe Reinforcement Learning Trainer to
solve the cart-pole problem.

101

POLICY GRADIENT MODEL

Two different models are used to solve the cart-pole problem, a Sigmoid based model and a Softmax
based model.

SIGMOID POLICY GRADIENT MODEL

The Sigmoid based policy gradient model is a very simple two-layer model consisting of two inner-
product layers. Input data from the cart-pole gym is fed into the Memory Data layer and then the loss
(and gradients) is calculated in the Memory Loss layer at the bottom of the model. The entire model is
trained using the RMSProp solver along with the MyCaffe Reinforcement Learning Trainer which then
trains the model loaded into the open MyCaffe project.

Figure 87 Sigmoid Policy Gradient Model

On each step, the sigmoid layer outputs a probability which is used to determine whether to move the
cart to the left or right. This probability is also used to calculate the gradient that encourages to move
toward the action that should have taken place [24].

102

SOFTMAX POLICY GRADIENT MODEL

The Softmax based policy gradient model is also a very simple two-layer model consisting of two inner-
product layers. Input data from the cart-pole gym is fed into the Memory Data layer and then the loss
(and gradients) is calculated in the Memory Loss layer at the bottom of the model. However, the Softmax
based model is not limited to two actions like the Sigmoid based model – instead the Softmax supports
as many actions as you need. The same RMSProp solver is again used along with the MyCaffe
Reinforcement Learning Trainer to train the model loaded into the open MyCaffe project.

Figure 88 Softmax Policy Gradient Model

On each step, the softmax layer outputs a probability which is used to determine whether to move the
cart to the left or right. This probability is also used to calculate the gradient that encourages to move
toward the action that should have taken place [24].

103

SOLVER SETTINGS

The following solver settings are used to train the model.

TrainerType=PG.MT; this directs the trainer to use the policy gradient trainer.
RewardType=VAL; this directs the trainer to output the actual reward values. Alternatively, a setting
of MAX returns the maximum reward.
Gamma=0.99; specifies the discount rate used on the rewards back into time.
Init1=10; directs the trainer to apply +/- 10 for a force setting during training.
Init2=0; directs the trainer to use non-additive forces, when 1, each new force applied is added to the
previous force used.

TRAINING

Before training, first create a new project with the Cart-Pole gym and model in it. To create a new
project, select the Add Project () button at the bottom of the Solutions window.

Figure 89 Creating the Cart-Pole Project

From the New Project dialog, select the Cart-Pole gym and Cart-Pole model and solver and press OK to
create the new project.

Open the project, by right clicking on the CartPoleTest project and selecting Open from the menu.
Once, open, double click on the project name to open the CartPoleTest project and select the Run
Training () button.

104

Figure 90 Start Training Cart-Pole

After a few minutes of training, you should see the rewards start to rise above 200 and continue to rise
as you train. The higher the reward, the longer the algorithm was able to balance the pole. Run the
training for an hour or so and you should see that the training is able to balance the pole for several
thousand steps where each step takes place over about 20 milliseconds – so you should be able to balance
the pole for a minute or more after training for a few hours.

To see the pole balancing in action, just double click on the Cart-Pole () gym from within the
CartPoleTest project – note you will need to do this while the project is training.

NOTE: When the gym window is open, the training steps slow down to 20 milliseconds per step to facilitate
a 30 frames per second in the Gym window. To speed the training back up, just close the gym window.

105

DEEP Q-LEARNING (DQN)

Dopamine is an open-source research project from Google that provides the Deep Q-Learning style of
reinforcement learning via a DQN Agent [25]. This learning technique works well with Noisy-Nets by
expanding the overall search scope by randomly altering the weights of the layer. In addition, a
prioritized memory collection [26] can help focus the learning. MyCaffe offers DQN learning through
the optional DQN trainer. Other alternative trainers include the PG (policy gradient) trainers such as
the PG.MT.

Dopamine uses “the DQN architecture as a starting point” to add more complex DQN variants such as
double DQN and the use of “Prioritized experience replay”. [25] DQN [27] [28] is a learning algorithm
that uses an agent to train two networks: an ‘online’ network that is trained to learn the optimal action-
value function (Q-values) produced by a second ‘target’ network.

The MyCaffe DQN and C51 trainers use modified versions of the Dopamine15 DQNAgent and
RainbowAgent both found on GitHub at:

DQNAgent:
https://github.com/google/dopamine/blob/master/dopamine/agents/dqn/dqn_agent.py

RainbowAgent:
https://github.com/google/dopamine/blob/master/dopamine/agents/rainbow/rainbow_agent.py

In addition, MyCaffe uses a Prioritized Replay Buffer [26] to optimize the sample selection of
experiences used during training. The trainer is tuned further by using a model that employs two
Noisy Dense layers which help optimize the solution search by randomly altering the weights of the
layer.

 The following sections discuss the NoisyNet model used to learn how to beat the ATARI game
‘breakout’ using the DQN trainer.

15 The Dopamine open-source is licensed by Google under the Apache 2.0 License
(http://www.apache.org/licenses/LICENSE-2.0) and made available on GitHub at
https://github.com/google/dopamine.

https://github.com/google/dopamine/blob/master/dopamine/agents/dqn/dqn_agent.py
https://github.com/google/dopamine/blob/master/dopamine/agents/rainbow/rainbow_agent.py
http://www.apache.org/licenses/LICENSE-2.0
https://github.com/google/dopamine

106

NOISYNET MODEL

The Noisy-Net [29] model uses one or more Inner Product layers that add noise to their weight and bias
values. With this configuration, the solution space is searched via by randomly altering the learned
parameters. Using the noisy-net supports numerous actions and is commonly used in conjunction with
a Deep Q-Network Agent and prioritized memory collection.

Figure 91 Noisy-Net Model

On each step the model outputs raw logits, however a softmax layer may also be used to convert the
logits into probabilities. The memory loss layer calculates the gradients which are then back
propagated through the model.

107

SOLVER SETTINGS

The following solver settings are used to train the model.

TrainerType=DQN.ST; this directs the trainer to use the policy gradient trainer.
RewardType=VAL; this directs the trainer to output the actual reward values. Alternatively a setting of
MAX returns the maximum reward.
Gamma=0.99; specifies the discount rate used on the rewards back into time.
MiniBatch=1; specifies the mini-batch over which gradients are accumulated.
UseAcceleratedTraining=False; specifies to both accumulate the gradients (when MiniBatch>1) and
apply the gradients on each step thus doubling up on the gradient updates.
AllowDiscountReset=False; specifies to reset the discount on negative rewards.
ValueType=BLOB; specifies to use three dimensional data (hxwxc).
InputSize=80; specifies an input size (h & w) of 80.
EpsStart=0.99; specifies the starting percentage of randomly selected actions.
EpsEnd=0.01; specifies the ending percentage of randomly selected actions.
EpsSteps=200000; specifies number of steps to use randomly selected actions.
FrameSkip=1; specifies the number of frames to skip (1 = none) on each step.
Preprocess=False; specifies whether or not to preprocess values to 1 or 0.
UseRawInput=True; specifies to use the raw input as opposed to using a difference between the
current and previous input.
ActionForceGray=True; specifies to force the data into a single channel.
AllowNegativeRewards=True; directs the Gym to allow negative rewards when a ball is missed.
TerminateOnRally=True; directs the Gym to force a termination state once a rally has completed as
opposed to a game completing.
GameROM=C:\Program~Files\SignalPop\AI~Designer\roms\breakout.bin; specifies the ATARI game
to play.

108

TRAINING

Before training, first create a new project with the ATARI gym and model in it. To create a new project,
select the Add Project () button at the bottom of the Solutions window.

Figure 92 Creating the NoisyNet Project

From the New Project dialog, select the ATARI gym and ATARI NoisyNet model and solver and press OK
to create the new project.

Open the project, by right clicking on the NoisyNetTest project and selecting Open from the menu.
Once, open, double click on the project name to open the NoisyNetTest project and select the Run
Training () button.

Figure 93 Training the NoisyNet

109

When training, the game progress is easily viewed by double clicking on the ATARI gym of the project
which displays the Gym Window shown below.

Figure 94 ATARI Gym - Breakout Game

During training, an overlay is drawn on the game to show the actual action probabilities used during
each step of the game.

110

LSTM RECURRENT LEARNING

In this next model, we use LSTM based recurrent learning to learn Shakespeare as inspired by Andrej
Karpathy [30] and adepierre [31]. With this example we demonstrate how to learn Shakespeare with
both the LSTM layer [32] and the LSTM_SIMPLE layer [33].

SHAKESPEARE OUTPUT

Both the LSTM and LSTM_SIMPLE layers learn and output Shakespeare like results, as shown below.

LSTM Output

Figure 95 LSTM output after 444k iterations.

111

LSTM_SIMPLE Output

Figure 96 LSTM_SIMPLE output after 600k iterations

As you can see, both models output Shakespeare, however, the LSTM model appears to learn some of
the subtle nuances such as line spacing better than the LSTM_SIMPLE model.

So how do each of these models work? The following sections go into more detail on the inner workings
of the LSTM and LSTM_SIMPLE layers.

When running

112

LSTM LAYER

The LSTM layer was originally created by Donahue, et al. [32] and is now a part of the original C++ Caffe
[2]. Two LSTM layers are used in the overall model shown below.

Figure 97 LSTM Model

The first LSTM layer is fed output from an EMBED layer used to transform each character within the
range [1,128] into a 15-output embedding of the character. A set of 25 batches of 75 element sequences
are embedded (using the EMBED) layer and then fed into the LSTM layer.

113

When feeding data into the LSTM layer, the following data ordering is used:

Value MValue 2Value 1

1 1 1

Se
qu

en
ce

 1
 –

 V
al

ue
 1

Se
qu

en
ce

 2
 –

 V
al

ue
 1

Se
qu

en
ce

 3
 –

 V
al

ue
 1

1

Se
qu

en
ce

 N
 –

 V
al

ue
 1

Batch Size: N

2 2 2

Se
qu

en
ce

 1
 –

 V
al

ue
 2

Se
qu

en
ce

 2
 –

 V
al

ue
 2

Se
qu

en
ce

 3
 –

 V
al

ue
 2

2

Se
qu

en
ce

 N
 –

 V
al

ue
 2

Batch Size: N

M M M

Se
qu

en
ce

 1
 –

 V
al

ue
 M

Se
qu

en
ce

 2
 –

 V
al

ue
 M

Se
qu

en
ce

 3
 –

 V
al

ue
 M

M

Se
qu

en
ce

 N
 –

 V
al

ue
 M

Batch Size: N

Sequence Length: M

0 0 0 0 1 1 1 1 1 1 1 1

Data/Label

Clip

Label = Data Idx + 1

Figure 98 Data Input

As shown in the model above, the INPUT layer has three top values: data, clip, and label. The data and
clip values eventually make their way to the LSTM layer (after embedding the data) and the label is used
by the SOFTMAXWITH_LOSS layer. When loading these values, each item in the label is set to the
character 1 index past the character placed in the corresponding data item. The clip is set to zero (0) for
the first item within a sequence and one (1) otherwise.

Note the EMBED input dim and INNER_PRODUCT output dim is dynamically set to the actual vocabulary
size, where the vocabulary size is determined by the number of unique characters found in the input data
set.

Also note, that the actual character values are not used as input to the data and label blobs, but instead
the index within the vocabulary of each character is used.

Value MValue 2Value 1

1 1 1

Se
qu

en
ce

 1
 –

 V
al

ue
 1

Se
qu

en
ce

 2
 –

 V
al

ue
 1

Se
qu

en
ce

 3
 –

 V
al

ue
 1

1

Se
qu

en
ce

 N
 –

 V
al

ue
 1

Batch Size: N

2 2 2

Se
qu

en
ce

 1
 –

 V
al

ue
 2

Se
qu

en
ce

 2
 –

 V
al

ue
 2

Se
qu

en
ce

 3
 –

 V
al

ue
 2

2

Se
qu

en
ce

 N
 –

 V
al

ue
 2

Batch Size: N

M M M

Se
qu

en
ce

 1
 –

 V
al

ue
 M

Se
qu

en
ce

 2
 –

 V
al

ue
 M

Se
qu

en
ce

 3
 –

 V
al

ue
 M

M

Se
qu

en
ce

 N
 –

 V
al

ue
 M

Batch Size: N

Sequence Length: M

INNER_PRODUCT Output (vocabulary index probabilities)

0 1 2 61

Vocabulary index probabilities of the
last Value (M) in the last Sequence (N)

RUN INPUT1 2

Figure 99 Run Input and Output

114

When running, a single sequence of characters is entered into the first sequence only with zero (0) in all
other sequences. After running, the probabilities of the last value in the last sequence are used to
determine the next character.

LSTM LAYER INTERNALS

What occurs within each LSTM layer? When training or running, the LSTM layer constructs the unrolled
network, which ‘unrolls’ the processing of each value within the sequence. Below, is the model of the
unrolled network for a 75-item sequence – this type of unrolled network exists in each LSTM layer.

3

1

1

2

2

4

4

5

6

7

8

9

10

Figure 100 LSTM Internal Unrolled Network

When running through a forward pass on the LSTM layer, the following steps take place.

1.) During initialization, the weights are loaded into the x_transform and transform_1
INNER_PRODUCT layers.

2.) Next, the previous c_75 (split into c_T) and h_75 values are copied into the start c_0 and h_0
INPUT layer values.

115

3.) The data inputs are then fed into the x values and the clip values are fed into the cont values
within the second INPUT layer.

4.) During the forward pass, a SLICE layer splits each of the 75 sequence clip values into separate
outputs named cont_1, … cont_75. And the output of the x values fed through an initial
INNER_PRODUCT layer is also split into their individual sequence values and are named
W_xc_x_1, … W_xc_x_75.

5.) A SCALE layer multiplies (e.g., scales) the initial h_0 value by the first cont_1 value (which is the
clip value for the first sequence value).

6.) An INNER_PRODUCT layer then transforms the scaled result from 5 above to produce the
W_hc_h_0 output.

7.) The result from 6 above is then summed with the slice of the W_xc_x output from 4
corresponding to the sequence element in play to produce the gate_input.

8.) The c value, gate_input value and cont value for this sequence element are next fed through
the LSTM_UNIT layer which applies the various gate transformations of Long-Short Term
Memory. The process returns to step 5 and repeats until each of the sequence items have been
processed (which in this case is 75 items).

9.) Upon completing processing, the 75-sequence item, the c_75 is split to produce the c_T and
h_75 values are then fed back into the INPUT layer described in step 2 above.

10.) The resulting h_0, … h_75 values are then concatenated together by a CONCAT layer to
produce the output h value which is returned as top[0]. The c_T value is returned as top[1].

The LSTM model is a truly deep model. What appears to be a 9-layer model is a 617-layer model for
each LSTM layer internally contains 305 layers within each of their unrolled networks.

116

TRAINING LSTM

To set up this model and start training, first create the model. To create a new project, select the Add
Project () button at the bottom of the Solutions window.

Figure 101 Creating the Cart-Pole Project

From the New Project dialog, select the DataGeneral gym and Char-RNN LSTM model and solver and
press OK to create the new project.

Open the project, by right clicking on the Char-RNN project and selecting Open from the menu. Once,
open, double click on the project name to open the Char-RNN project and select the Run Training ()
button.

117

Figure 102 Training LSTM

Even with such a large network, the operations on a Titan Xp are very quick with each forward/backward
pass completing in around 64 milliseconds or so – this really shows the power of GPU based deep
learning!

118

LSTM_SIMPLE LAYER

The LSTM_SIMPLE layer was originally created by junhyukoh [33] and takes a different approach to that
of the LSTM layer in that the LSTM_SIMPLE layer completes all operations without the use of a large
unroll network. When using the LSTM_SIMPLE layer, the model looks as follows.

Figure 103 LSTM Model

As you can see the model is very similar to the model used by the LSTM layer with the main differences
being in the data shapes input into the model and the use of the LSTM_SIMPLE layer instead of the LSTM
layer.

119

When feeding data into the LSTM_SIMPLE layer, the following data ordering is used with batch size = 1.

Value
MValue 2Value 1

1

Se
qu

en
ce

 1
 –

 V
al

ue
 1

Batch Size: 1

2

Se
qu

en
ce

 1
 –

 V
al

ue
 2

M

Se
qu

en
ce

 1
 –

 V
al

ue
 M

Sequence Length: M

0 1 1

Data/Label

Clip

Label = Data Idx + 1

Figure 104 Data Input

As shown in the model above, the INPUT layer still has three top values: data, clip, and label. The data
and clip values eventually make their way to the LSTM_SIMPLE layer (after embedding the data) and the
label is again used by the SOFTMAXWITH_LOSS layer. When loading these values, each item in the label
is set to the character 1 index past the character placed in the corresponding data item. The clip is set to
zero (0) for the first item within a sequence and one (1) otherwise.

Note the EMBED input dim and INNER_PRODUCT output dim is dynamically set to the actual vocabulary
size, where the vocabulary size is determined by the number of unique characters found in the input data
set.

Also note, that the actual character values are not used as input to the data and label blobs, but instead
the index within the vocabulary of each character is used.

Value
MValue 2Value 1

1

Se
qu

en
ce

 1
 –

 V
al

ue
 1

2

Se
qu

en
ce

 1
 –

 V
al

ue
 2

M

Se
qu

en
ce

 1
 –

 V
al

ue
 M

Sequence Length: M

INNER_PRODUCT Output (vocabulary index probabilities)

0 1 2 61

Vocabulary index probabilities of the
last Value (M) in the last Sequence (N)

RUN INPUT1 2

Batch Size: 1

Figure 105 Run Input and Output

120

TRAINING LSTM_SIMPLE

To set up this model and start training, first create the model. To create a new project, select the Add
Project () button at the bottom of the Solutions window.

Figure 106 Creating the Cart-Pole Project

From the New Project dialog, select the DataGeneral gym and Char-RNN LSTM_SIMPLE model and
solver and press OK to create the new project.

Open the project, by right clicking on the Char-RNN project and selecting Open from the menu. Once,
open, double click on the project name to open the Char-RNN project and select the Run Training ()
button.

121

Figure 107 Training LSTM_SIMPLE

As expected, the LSTM_SIMPLE with a batch size = 1, runs about 30% faster than the LSTM, however,
the learning is not as smooth and as noted above, the model may miss important details picked up by the
LSTM layer.

122

ENCODER-DECODER TRANSFORMERS (CHATGPT LIKE)

The encoder/decoder transformer models, initially introduced by Vaswani et al. [34], are also like the
models used to power the popular ChatGPT service from OpenAI. These models comprise an encoder
side that learns the probability distribution of the query or first language, and a decoder that first learns
the probability distribution of the response or second language, then learns to map the two probability
distributions via a multi-headed attention layer.

Figure 108 Encoder/Decoder Transformer Model

The Encoder/Decoder Transformer model is also useful for language translation, and the following
steps describe how to create and train a model to translate from English to French.

123

CREATE THE TRANSFORMER MODEL

Using the pre-created encoder/decoder transformer model template, we can easily create a new model
for language translation.

To create a new project, select the Add Project () button at the bottom of the Solutions window.

Figure 109 Creating the Cart-Pole Project

From the New Project dialog, select the MODEL dataset type and Encoder-Decoder model and solver
and press OK to create the new project.

Open the project, by right clicking on the encdec project and selecting Open from the menu. Once,
open, double click on the project name to open the encdec project and select the Run Training ()
button.

124

Figure 110 Training the Encoder/Decoder model for Language Translation

After training for around 15,000 iterations, you are ready to test the model. To test the model, select

the Test Many radio button in the lower right corner of the project window. Next, select the Test ()
button to start testing.

The Test Many dialog will display, allowing you to enter the English language you want translated.

Figure 111 Test Many Input Dialog Box

125

After pressing, OK, the model is run in an inference mode over the inputs to produce the translated text
which is output in the results window.

Figure 112 Test Many Results

To check you results, you can pass the same resulting output into Google Translate and verify the
English translation with your inputs.

Figure 113 Using Google Translate to Verify Results

You have now created and trained your first Encoder/Decoder Transformer model for language
translation!

126

TEMPORAL FUSION TRANSFORMER MODEL FOR TIME SERIES PREDICTION

In this next example, we will use a Temporal Fusion Transformer (TFT) model, initially introduced by
Lim, et. al. [35], for time series prediction. We will use this model to predict the use of electricity and in
a separate sample to predict the flow of traffic.

Data Input

Data Embedding

Static Variable Selection

Static Encoding

Historical Variable Selection Future Variable Selection

Sequence Processing

Static Enrichment

Attention Processing

Final Processing

1

2

3

4

5 6

7

8

9

10

Figure 114 TFT Model Flow

The TFT takes various forms of input data that are static, observed or known. Static data include items
that are not tied to temporal measurements (e.g., not tied to time). Observed data include items that
are observable only up to the present and are not known in the future. The price of a stock is an
example of observed data. Known data include items that are known both in the past and future. The
time of day is an example of a known data. Each data type (static, observed and known) may be
numeric data or categorical data. Numeric data values are continuous values whereas categorical data
items are discrete values that represent a category from a set of categories. For example, a stock price

127

at a given point in time would be numeric data whereas the symbol from a set of symbols would be
considered categorical data.

When running the TFT model, the following steps take place.

1.) First the data input is collected from a CSV or NPY file, or from a database. Typically, the input
data is already pre-processed in that all numerical values are normalized by centering and
dividing by the standard deviation. Data inputs associated with differing categorical inputs are
normalized within each category. For example, data from one stock symbol is only normalized
against data from the same stock symbol.

2.) An embedding is created for each data input where numeric data items are fed into linear
projections and categorical data are fed into embedding layers.

3.) The static embeddings are fed into the static variable selection network used to weigh the
static variables that contribute most to the prediction. A side output of the static VSN provides
the weighting which allows for post model analysis of the variable contributions.

4.) Static encodings are created for the static VSN outputs which are used for static selection in the
historical and future VSNs, static enrichment, and as inputs to the first sequence processing
LSTM.

5.) The historical encodings are fed into the historical variable selection network used to weigh the
historical variables that contribute most to the prediction. Like the static VSN, the historical
VSN also outputs the variable weights allowing for post model analysis of the variable
contributions to the model.

6.) The future encodings are fed into the future variable selection network used to weigh the future
variables that contribute most to the prediction. These weights can also be analyzed during
post model to show the variable contributions to the model.

7.) The historical and future VSN outputs are fed into the sequence processing which also have
static encodings for the initial LSTM cell and hidden inputs. A two LSTM stack form an
encoder/decoder that processes the sequential nature of the data.

8.) The sequential processing and static encoding are then fed into the static enrichment phase,
which…

9.) … passes down through the attention processing that uses a multi-headed attention layer
designed for interpretability. The attention scores output is useful to see where most of the
attention is placed within the time series data.

10.) The attention output is passed to the final processing that is either output as a set of quantile
future predictions, fed into the loss layer during training, or the accuracy layer during testing.

128

As you can imagine, the final model is quite complex.

129

Figure 115 Temporal Fusion Transformer Model

The following sections describe the steps needed to get started training a TFT to predict electricity use
and traffic flow.

130

DATA PREPARATION

Before training the models, you will need to get and pre-process the data sets. To get the data, you can
either download the datasets from the following links:

https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011_2014.txt.zip (electricity)

https://archive.ics.uci.edu/ml/machine-learning-databases/00204/PEMS-SF.zip (traffic)

Alternatively, run the MyCaffe Test Application and select the ‘Test | Download Test Data | TFT (Data
Only)’ menu item which will place the model data in the following directories:

C:\ProgramData\MyCaffe\test_data\tft\data\electricity

C:\ProgramData\MyCaffe\test_data\tft\data\traffic

DATA PREPROCESSING

Once you have the data downloaded, you can use the SignalPop AI Designer™ data set creators to
load, preprocess and save the data as a set of NPY files that the DataTemporalLayer can load.

https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011_2014.txt.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00204/PEMS-SF.zip

131

ELECTRICITY DATA PREPROCESSING

From within the SignalPop AI Designer ™, select the Dataset Creators tab and double click on the
TFT.Electricity dataset creator.

Figure 116 TFT Electricity Dataset Creator

Enter in the following settings in the property window and select the Run () button to start creating
the pre-processed dataset:

Data File: C:\ProgramData\MyCaffe\test_data\tft\data\electricity\LD2011_2014.txt

Output Path: C:\ProgramData\MyCaffe\test_data\tft\data\electricity

Upon completion, the pre-processed files are placed in the following output directory.

C:\ProgramData\MyCaffe\test_data\tft\data\electricity\preprocessed

In addition to normalizing the data, the datasets are split into train, test, and validation sets.

132

TRAFFIC DATA PREPROCESSING

From within the SignalPop AI Designer ™, select the Dataset Creators tab and double click on the
TFT.Traffic dataset creator.

Figure 117 TFT Traffic Dataset Creator

Enter in the following settings in the property window and select the Run () button to start creating
the pre-processed dataset:

Data File PEMS train: C:\ProgramData\MyCaffe\test_data\tft\data\traffic\PEMS_train
Data File PEMS train labels: C:\ProgramData\MyCaffe\test_data\tft\data\traffic\PEMS_trainlabels
Data File PEMS test: C:\ProgramData\MyCaffe\test_data\tft\data\traffic\PEMS_test
Data File PEMS test labels: C:\ProgramData\MyCaffe\test_data\tft\data\traffic\PEMS_testlabels
Data File randperm: C:\ProgramData\MyCaffe\test_data\tft\data\traffic\randperm
Data File stations_list: C:\ProgramData\MyCaffe\test_data\tft\data\traffic\stations_list

Output Path: C:\ProgramData\MyCaffe\test_data\tft\data\traffic

Upon completion, the pre-processed files are placed in the following output directory.

C:\ProgramData\MyCaffe\test_data\tft\data\traffic\preprocessed

In addition to normalizing the data, the datasets are split into train, test, and validation sets.

133

TFT FOR ELECTRICITY USE PREDICTION

To set up this model and start training, first create the model. To create a new project, select the Add
Project () button at the bottom of the Solutions window.

Figure 118 Creating the TFT Electricity Project

From the New Project dialog, select the MODEL (temporal) and TFT Electricity model and solver and
press OK to create the new project.

Open the project, by right clicking on the TFT_electricity project and selecting Open from the menu.

Double clicking on the tft_net displays the model architecture. By selecting the DataTemporal layer
you can then see its properties in the Properties window to the right. Note, each DataTemporal layer
points to the same source folder. The data file with the matching phase is loaded from this directory.

134

Next, double click on the project name TFT_electricity to open the TFT_electricity project and select the
Run Training () button.

Figure 119 Training the TFT_electricity Model.

The model uses the ADAMW solver with the following settings:

Learning Rate: 0.001

Weight Decay: 0.0

Lr Policy: SIGMOID

AdamW Decay: 0.0

Momentum: 0.9

Momentum2: 0.999

135

After training for around 1000 iterations, try running the Test () with the Test Many radio button
selected. This will first prompt you for the schema file which is in the preprocessed directory.

Figure 120 Run Test Many for Analysis

Running the Test Many runs a detailed analysis on the data that first shows several predictions against
the actuals used during training.

Figure 121 Predictions vs Actuals

136

Next the static, historical and future variables are analyzed by showing their relative contributions to
the model.

Figure 122 Variable Contributions

As you can see, log-power usage has the highest impact in the historical variables followed by the hour.
And the hour from start has the highest impact in the future variables.

137

Next, the temporal weights for each variable are analyzed from a random sample to show where in
time the variable contributions were made. The following shows the weights for the historical
variables.

Figure 123 Historical Temporal Weights

And the following shows the weights for the future variables.

Figure 124 Future Temporal Weights

138

And finally, the attention scores are displayed to show where in the temporal data the focus was spent
during the learning process.

Figure 125 Temporal Attention Scores

The temporal attention scores are shown in a multi-percentile view (10, 50 and 90 percentiles) followed
by a multi-horizon view (1, 3 and 5 horizons at 50 percentile).

As shown above, a 24-hour cycle was observed by the attention scores.

139

TFT FOR TRAFFIC FLOW PREDICTION

To set up this model and start training, first create the model. To create a new project, select the Add
Project () button at the bottom of the Solutions window.

Figure 126 Creating the TFT Traffic Project

From the New Project dialog, select the MODEL (temporal) and TFT Traffic model and solver and press
OK to create the new project.

Open the project, by right clicking on the TFT_traffic project and selecting Open from the menu.

Double clicking on the tft_net displays the model architecture. By selecting the DataTemporal layer
you can then see its properties in the Properties window to the right. Note, each DataTemporal layer
points to the same source folder. The data file with the matching phase is loaded from this directory.

Note, when training, if you do not have enough memory to load the model, you will receive an error.

When this occurs, select each DataTemporal layer and reduce the batch size from 64 to 32, or 16
depending on the amount of memory in your GPU.

140

Next, double click on the project name TFT_traffic to open the TFT_traffic project and select the Run
Training () button.

Figure 127 Training the TFT_traffic Model.

The model uses the same ADAMW solver and settings used by the TFT electricity model discussed
above.

141

After training for around 1000 iterations, try running the Test () with the Test Many radio button
selected. This will first prompt you for the schema file which is in the preprocessed directory.

Figure 128 Run Test Many for Analysis

Running the Test Many runs a detailed analysis on the data that first shows several predictions against
the actuals used during training.

Figure 129 Predictions vs Actuals

142

Next the static, historical and future variables are analyzed by showing their relative contributions to
the model.

Figure 130 Variable Contributions

As you can see, value (traffic flow) has the highest impact in the historical variables followed by the time
on day. And the time on day has the highest impact in the future variables followed by the day of week.

143

Next, the temporal weights for each variable are analyzed from a random sample to show where in
time the variable contributions were made. The following shows the weights for the historical
variables.

Figure 131 Historical Temporal Weights

And the following shows the weights for the future variables.

Figure 132 Future Temporal Weights

144

And finally, the attention scores are displayed to show where in the temporal data the focus was spent
during the learning process.

Figure 133 Temporal Attention Scores

The temporal attention scores are shown in a multi-percentile view (10, 50 and 90 percentiles) followed
by a multi-horizon view (1, 3 and 5 horizons at 50 percentile).

Although not as periodic as the electricity data, the traffic attention scores also show a 24-hour cycle
which would account for rush-hour.

145

SUMMARY

As you use the SignalPop AI Designer, make sure to check the following resources for helpful hints and
updates related to the product.

SignalPop Site - see http://www.signalpop.com for new MyCaffe based products that leverage the
models you build with the SignalPop AI Designer.

SignalPop Blog – see https://www.signalpop.com/blog/ for updated news on the product, new models
that we support and general product information.

MyCaffe on GitHub – see http://github.com/mycaffe for updates on the MyCaffe AI Platform including
its full source code and automated tests. The SignalPop AI Designer is designed to work directly with
the MyCaffe AI Platform.

MyCaffe on NuGet – see http://www.nuget.org/packages?q=MyCaffe for updates of the MyCaffe
binary components that are easily integrated into your own C# applications for Windows.

SignalPop AI Designer Main Help – see https://www.signalpop.com/help/ or select the ‘Help | Main
Help’ menu in the SignalPop AI Designer for detailed help on the MyCaffe AI Platform. Within this help
you can find descriptions of each Activation type, Filler type and much more.

http://www.signalpop.com/
https://www.signalpop.com/blog/
http://github.com/mycaffe
http://www.nuget.org/packages?q=MyCaffe
https://www.signalpop.com/help/

146

APPENDIX A – SIGNALPOP UNIVERSAL MINER

Originally created to mine Ethereum, the SignalPop Universal Miner™ provides an easy way to monitor
your GPU temperatures and fan speeds.

Free Download16 https://signalpop.blob.core.windows.net/wpeupdate/wpe.net.app.setup.exe

HARDWARE MONITORING

Monitor current GPU temperatures, usage, fan speeds and clock settings with the Hardware Window.

Figure 134 Hardware Window

16 A small portion of daily mining time is run using our mining address to help pay for maintaining the SignalPop Universal
Miner – this is otherwise known as the ‘dev fee’.

147

Monitor hardware changes over time (such as fan speeds and temperatures) with the History Window.

Figure 135 History Window

148

APPENDIX B – DATASET CREATOR INTERFACE

Each dataset creator is a plug-in module to the SignalPop AI Designer. At some point you may want to
create your own dataset creators. To create a dataset creator, you will need to create a C# component
that implements the IXDatasetCreator interface as described below.

IXDATASETCREATOR INTERFACE

The IXDatasetCreator interface is the main interface used by the SignalPop AI Designer to create
datasets and has the following methods:

Name; returns the name of the creator.

QueryConfiguration; returns the configuration settings of the creator that show up on the property
window.

Create; creates the dataset and gives feedback to the application via the IXDatasetCreatorProgress
interface.

IXDATASETCREATOR::NAME

Syntax string Name { get; }

Description Returns the name of the dataset creator.

IXDATASETCREATOR::QUERYCONFIGURATION

Syntax void QueryConfiguration(DatasetConfiguration config)

Description Returns the configuration settings for the dataset creator in a DatasetConfiguration
object.

IXDATASETCREATOR::CREATE

Syntax void Create(DatasetConfiguration config,
 IXDatasetCreatorProgress progress)

Description Creates the dataset using the configuration settings in the config parameter all the
while calling the progress object to display the progress updates in the SignalPop AI
Designer.

149

DATASETCONFIGURATION OBJECT

The DatasetConfiguration object contains the set of settings used when creating the dataset. This
object has the following methods:

DatasetConfiguration constructor; used to create a new collection.

IsReadOnly; specifies whether the configuration is read-only or not.

ID; specifies the ID of the dataset creator.

Name; specifies the name of the dataset creator.

SelectedGroup; optionally, specifies the selected group of the dataset creator.

Settings; specifies the collection of settings used when creating the dataset.

Sort; sorts the settings within the Settings collection.

Clone; duplicates this configuration object and returns it as a new one.

SaveToFile; saves the configuration settings to a file.

LoadFromFile; loads a set of configurations from file.

DATASETCONFIGURATION::ISREADONLY

Syntax bool IsReadOnly { get; }

Description Returns whether the configuration is read-only or not.

DATASETCONFIGURATION::ID

Syntax int ID { get; set; }

Description Get/set the ID of the dataset creator.

DATASETCONFIGURATION::NAME

Syntax string Name { get; }

Description Returns the name of the dataset creator.

150

DATASETCONFIGURATION::SELECTEDGROUP

Syntax string SelectedGroup { get; }

Description Returns the name of the dataset creator.

DATASETCONFIGURATION::SETTINGS

Syntax DataConfigurationSettingCollection Settings { get; }

Description Returns the collection of settings used to create the dataset.

DATASETCONFIGURATION::SORT

Syntax void Sort()

Description Sorts the Settings collection.

DATASETCONFIGURATION::CLONE

Syntax DatasetConfiguration Clone()

Description Returns a copy of the configuration settings.

DATASETCONFIGURATION::SAVETOFILE

Syntax void SaveToFile(DataConfiguration[] settings,
 string strFile)

Description Save the settings to the file specified.

DATASETCONFIGURATION::LOADFROMFILE

Syntax DataConfiguration[] LoadFromFile(string strFile)

Description Load the settings from the file specified.

151

DATACONFIGSETTINGCOLLECTION OBJECT

The DataConfigSettingCollection provides a standard List interface to a collection of
DataConfigSetting objects.

DATACONFIGSETTING OBJECT

Each DataConfigSetting object contains the data for one setting of the settings used to create the
dataset. The DataConfigSetting has the following methods.

VerifyInterface; interface used to verify the setting, when set.

Name; returns the name of the setting.

Extra; returns extra string data of the setting (sometimes this is used to specify a file extension).

Value; get/set the value of the setting.

Type; returns the type of the setting value.

Clone; returns a copy of the setting.

ToString; returns a string representation of the setting.

ToSaveString; returns a string used for saving.

Parse; parses a saved string into a setting.

DATACONFIGSETTING::VERIFYINTERFACE

Syntax IXDatasetCreatorSettings VerifyInterface { get; }

Description Returns the interface used to verify the setting (or null if not set).

DATACONFIGSETTING::NAME

Syntax string Name { get; }

Description Returns the name of the setting.

152

DATACONFIGSETTING::EXTRA

Syntax string Extra { get; }

Description Returns extra information about the setting such as an expected file extension.

DATACONFIGSETTING::VALUE

Syntax object Value { get; set; }

Description Get/set the actual setting value.

DATACONFIGSETTING::TYPE

Syntax DataConfigSetting::TYPE Type { get; }

Description Returns the type of the setting where TYPE is one of the following values:

TEXT – specifies the setting value is a string type.

FILENAME – specifies the setting value is a string type that represents a file name.

DIRECTORY – specifies the setting value is a string type that represents a directory.

LIST – specifies the setting value is a list of setting values.

DATETIME – specifies the setting value is a DateTime object.

INTEGER – specifies the setting value is an int value.

REAL – specifies the setting value is a double value.

CUSTOM – specifies the setting value is a custom value.

HELP – specifies the setting value is help information in string form.

DATACONFIGSETTING::CLONE

Syntax DataConfigSetting Clone()

Description Returns a copy of the setting.

DATACONFIGSETTING::TOSAVESTRING

Syntax string ToSaveString()

Description Returns a string representing the settings of the configuration used for saving.

153

DATACONFIGSETTING::PARSE

Syntax static DataConfigSetting Parse(string str,

 IXDatasetCreatorSettings iVerify = null)

Description Returns a string representing the settings of the configuration used for saving.

Parameters string str; specifies the string containing the settings to parse.

 IXDatasetCreatorSettings iVerify; specifies optional the interface to use for
setting verification, default = null.

IXDATASETCREATORSETTINGS INTERFACE

Optionally, you may also want to implement the IXDatasetCreatorSettings interface which then gives
your dataset creator the chance to validate settings before accepting them. The
IXDatasetCreatorSettings interface has the following methods:

VerifyConfiguration; allows you to verify the settings before accepting them.

GetCustomSetting; allows you to query the user for a custom setting type.

IXDATASETCREATORSETTINGS::VERIFYCONFIGURATION

Syntax void VerifyConfiguration(DataConfigSetting[] settings)

Description Verify the settings and if invalid, throw an exception.

Parameters DataConfigSetting[] settings; specifies the settings to verify.

IXDATASETCREATORSETTINGS::GETCUSTOMSETTING

Syntax void GetCustomSetting(string strName,
 string strCustomSettingType,
 DataConfigSetting[] settings)

Description Retrieve the custom setting with the name strName and place it within the settings
array.

Parameters string strName; specifies the name of the setting to retrieve.

 String strCustomSettingType; optionally, specifies a custom setting type, or null
when not used.

 DataConfigSetting[] settings; specifies the settings to search.

154

IXDATASETCREATORPROGRESS INTERFACE

The IXDatasetCreatorProgress interface is implemented by the SignalPop AI Designer and passed as a
parameter to the IXDatasetCreator::Create method thus allowing you to give feedback of the dataset
creation process. The IXDatasetCreatorProgress interface has the following methods:

OnProgress; called to pass along general progress information including the percentage complete.

OnCompleted; called upon completing the dataset creation process.

IXDATASETCREATORPROGRESS::ONPROGRESS

Syntax void OnProgress(CreateProgressArgs args)

Description Call this method (implemented by the SignalPop AI Designer) when you want to
update the designer of the status and progress taking place when creating your
dataset.

IXDATASETCREATORPROGRESS::ONCOMPLETED

Syntax void OnCompleted(CreateProgressArgs args)

Description Call this method (implemented by the SignalPop AI Designer) when you are done
creating your dataset.

CREATEPROGRESSARGS OBJECT

The CreateProgressArgs object describes the progress status taking place when creating your dataset
and has the following methods.

Aborted; specifies that the creation process was aborted.

PercentComplete; specifies the percentage of completion of the creation process.

PercentCompleteAsText; a text representation of PercentComplete;

Message; specifies a message describing the current status of the creation process.

Error; specifies an error that occurred during the creation process.

Abort; specifies whether to abort the creation process.

155

CREATEPROGRESSARGS::ABORTED

Syntax bool Aborted{ get; }

Description Returns whether the process was aborted.

CREATEPROGRESSARGS::PERCENTCOMPLETE

Syntax double Aborted{ get; }

Description Returns the percentage of completion as a number between 0.0 and 1.0.

CREATEPROGRESSARGS::PERCENTCOMPLETEASTEXT

Syntax string PercentCompleteAsText{ get; }

Description Returns the percentage of completion as string such as 20.0%.

CREATEPROGRESSARGS::MESSAGE

Syntax string Message{ get; }

Description Returns the status of the creation process.

CREATEPROGRESSARGS::ERROR

Syntax Exception Error{ get; }

Description Returns an error that occurred during the creation process.

CREATEPROGRESSARGS::ABORT

Syntax bool Abort{ get; set; }

Description Specifies whether the SignalPop AI Designer should abort the creation process.

156

EXAMPLE SOURCE CODE

To interact with the database, you will want to use the DatasetFactoryEx object within the
DNN.net.data namespace, which is derived from the DatasetFactory object within the
MyCaffe.imagedb namespace.

These two objects allow you to easily create new Datasets, Data Sources, Labels and Raw Images.

For more information and example source code that shows how to create your own dataset creator, see
us on GitHub at: https://github.com/MyCaffe/AiDesigner.

https://github.com/MyCaffe/AiDesigner

157

REFERENCES

[1] D. W. Brown, "MyCaffe: A Complete C# Re-Write of Caffe with Reinforcement Learning," Cornell
University, 4 October 2018. [Online]. Available: https://arxiv.org/abs/1810.02272.

[2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama and T. Darrell,
"Caffe: Convolutional Architecture for Fast Feature Embedding," 20 June 2014. [Online].
Available: https://arxiv.org/abs/1408.5093.

[3] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand and V.
Lempitsky, "Domain-Adversarial Training of Neural Networks," Journal of Machine Learning
Research 17, pp. 1-35, 2016.

[4] M. Andrecut, "Parallel GPU Implementation of Iterative PCA Algorithms," arXiv, vol.
arXiv:0811.1081, p. 45, 7 November 2008.

[5] L. van der Maaten and G. Hinton, "Visualizing Data using t-SNE," Journal of Machine Learning
Research, no. 9, pp. 1-27, 2008.

[6] L. van der Maaten and G. Hinton, "User's Guide for t-SNE Software," 2016. [Online]. Available:
https://lvdmaaten.github.io/tsne/User_guide.pdf.

[7] OpenAI, "CartPole-V0," OpenAI, [Online]. Available: https://gym.openai.com/envs/CartPole-v0/.

[8] OpenAI, "cartpole.py on GitHub," GitHub, 27 April 2016. [Online]. Available:
https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py.

[9] R. e. a. Sutton, "http://incompleteideas.net/sutton/book/code/pole.c," 1983. [Online]. Available:
https://perma.cc/C9ZM-652R.

[10] A. G. Barto, R. S. Sutton and C. W. Anderson, "Neuronlike adaptive elements that can solve
difficult learning control problems," IEEE, Vols. SMC-13, no. 5, pp. 834-846, September 1983.

[11] M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional Networks," arXiv, vol.
arXiv:1311.2901, 28 November 2013.

[12] Wikipedia, "DeepDream".

158

[13] L. A. Gatys, A. S. Ecker and M. Bethge, "A Neural Algorithm of Artistic Style," 26 Aug 2015.
[Online]. Available: https://arxiv.org/abs/1508.06576.

[14] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image
Recognition," 4 Sep 2014. [Online]. Available: https://arxiv.org/abs/1409.1556.

[15] Q. V. Le, "A Tutorial on Deep Learning Part 2: Autoencoders, Convolution Neural Networks and
Recurrent Neural Networks," 20 October 2015. [Online]. Available:
http://robotics.stanford.edu/~quocle/tutorial2.pdf.

[16] V. Turchenko, E. Chalmers and A. Luczak, "A Deep Convolutional Auto-Encoder with Pooling -
Unpooling Layers in Caffe," arXiv, p. 21 pages, Jan 18, 2018.

[17] Berkeley Artificial Intelligence Research (BAIR), "Siamese Network Training with Caffe," Berkeley
Artificial Intelligence Research, [Online]. Available:
https://caffe.berkeleyvision.org/gathered/examples/siamese.html.

[18] G. Koch, R. Zemel and R. Salakhutdinov, "Siamese Neural Networks for One-shot Image
Recognition," ICML 2015 Deep Learning Workshop, p. 8, 2015.

[19] K. L. Wiggers, A. S. Britto, L. Heutte, A. L. Koerich and L. S. Oliveira, "Image Retrieval and Pattern
Spotting using Siamese Neural Network," arXiv, vol. 1906.09513, p. 8, 22 June 2019.

[20] Y.-A. Chung and W.-H. Weng, "Learning Deep Representations of Medical Images using Siamese
CNNs with Application to Content-Based Image Retrieval," arXiv, vol. 1711.08490, p. 8, 22
November 2017.

[21] D. J. Rao, S. Mittal and S. Ritika, "Siamese Neural Networks for One-shot detection of Railway
Track Switches," arXiv, vol. 1712.08036, p. 6, 21 December 2017.

[22] A. Karpathy, "Deep Reinforcement Learning: Pong from Pixels," Andrej Karpathy blog, 31 May
2016. [Online]. Available: http://karpathy.github.io/2016/05/31/rl/.

[23] A. Karpathy, "karpathy/pg-pong.py," GitHub, 2016. [Online]. Available:
https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5.

[24] A. Karpathy, "CS231n Convolutional Neural Networks for Visual Recognition," Stanford
University, [Online]. Available: http://cs231n.github.io/neural-networks-2/#losses.

159

[25] P. S. Castro, S. Moitra, C. Gelada, S. Kumar and M. G. Bellemare, "Dopamine: A Research
Framework for Deep Reinforcement Learning," arXiv, vol. arXiv:1812.06110v1, p. 11, 14 December
2018.

[26] T. Schaul, J. Quan, I. Antonoglou and D. Silver, "Prioritized Experience Replay," arXiv, no.
arXiv:1511.05952, p. 21, 18 November 2015.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M.
Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wiestra, S. Legg and D. Hassabis, "Human-level control through deep
reinforcement learning," Nature, p. 13, 25 February 2015.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wiestra and M. Riedmiller,
"Playing Atari with Deep Reinforcement Learning," arXiv, no. arXiv:1312.5602v1, p. 9, 19
December 2013.

[29] M. Fortunato, M. A. Gheshlaghi, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos, D.
Hassabis, O. Pietquin, C. Blundell and S. Legg, "Noisy Networks for Exploration," arXiv, no.
arxiv:1706.10295v2, p. 21, 30 June 2017.

[30] A. Karpathy, "The Unreasonable Effectiveness of Recurrent Neural Networks," Andrej Karpathy
blog, 21 May 2015. [Online]. Available: http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

[31] adepierre, "adepierre/caffe-char-rnn Github," Github.com, 25 January 2017. [Online]. Available:
https://github.com/adepierre/caffe-char-rnn.

[32] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko and T.
Darrell, "Long-term Recurrent Convolutional Networks for Visual Recognition and Description,"
Cornell University Library, arXiv.org, 17 November 2014. [Online]. Available:
https://arxiv.org/abs/1411.4389.

[33] junhyukoh, "Junhyukoh/caffe-lstm Github," Github.com, 30 August 2016. [Online]. Available:
https://github.com/junhyukoh/caffe-lstm.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and I.
Polosukhin, "Attention Is All You Need," arXiv, 12 June 2017. [Online]. Available:
https://arxiv.org/abs/1706.03762.

160

[35] B. Lim, S. O. Arik, N. Loeff and T. Pfister, "Temporal Fusion Transformers for Interpretable Multi-
horizon Time Series Forecasting," arXiv, vol. 19, p. Dec, 2019.

	Getting Started
	Overview
	Product Minimum Requrements

	Datasets
	Creating Datasets
	Creating the MNIST Dataset
	Creating the MNIST ‘Source’ and ‘Target’ Datasets
	Creating the CIFAR-10 Dataset
	Creating an Image Dataset

	Viewing Datasets
	Analyzing Datasets
	Iterative PCA Analysis
	t-SNE Analysis

	Gym Datasets
	Creating a Gym Datases

	Projects
	Creating New Projects
	Project Editing
	Visual Configuration Dialogs
	Text vs Graphical Editing
	Model Toolbox
	Layer Updates
	Half Sized Memory
	Freezing Learning

	Opening Projects
	Project Settings
	Image Loading – LOAD_FROM_SERVICE Configuration
	SQL Database Account

	Training and Testing Projects
	Scheduling Projects
	Adding a Project to the Schedule
	Setting up Secure Database Access
	Setting up SQL
	Setting up SQL User

	Setting the Scheduling Database
	Scheduling States

	Importing and Exporting
	Importing a Project
	Importing Pre-Trained Models
	Importing Weights
	Importing Weights for Transfer Learning
	Exporting Projects
	Exporting to Docker
	Docker Setup
	Exporting Datasets to Docker
	Exporting Projects to Docker

	Custom Trainers
	Custom Trainer Settings - Trainers
	Custom Trainer Settings - Properties

	Debugging
	Real-Time
	Histogram Blob Visualization
	Image Blob Visualization
	Model Debugging
	Inspecting Links
	Inspecting Layers

	Visualizations
	Weight Visualization
	Network Visualization
	Label Impact Visualization

	Evaluators
	Image Evaluation
	Dream Evaluation
	Neural Style Transfer Evaluation
	What Neural Style Transfer Does
	Neural Style Settings
	Layer Settings
	Neural Style Limitations

	Hardware
	Processor Resource Window
	Project Throughput
	Real-Time Debug Timing
	Memory Tester

	Example Models
	Domain-Adversarial Neural Networks (DANN)
	Datasets
	DANN Model
	Full Model

	Validating the DANN Model

	Deep Auto-Encoder Networks
	Datasets
	Auto-Encoder Model
	Full Model
	Model Analysis
	Layer Inspection
	Data Inspection
	Encoding Separation

	Using Pre-Trained Auto-Encoder
	Importing Auto Encoder Weights

	Training Comparison

	Siamese Network with Contrastive Loss for One-Shot Learning
	Datasets
	Siamese Net Model
	Full Model
	Training and Testing Phase
	Run Phase

	Training and Testing

	Policy Gradient Reinforcement Learning
	Datasets
	Policy Gradient Model
	Sigmoid Policy Gradient Model
	Softmax Policy Gradient Model
	Solver Settings

	Training

	Deep Q-Learning (DQN)
	NOISYNET Model
	Solver Settings

	Training

	LSTM Recurrent Learning
	Shakespeare Output
	LSTM Layer
	LSTM Layer Internals
	Training LSTM
	LSTM_SIMPLE Layer
	Training LSTM_SIMPLE

	Encoder-Decoder Transformers (ChatGPT like)
	Create the Transformer Model

	Temporal Fusion Transformer Model for Time Series Prediction
	Data Preparation
	Data Preprocessing
	Electricity Data PreProcessing
	Traffic Data PreProcessing

	TFT for Electricity Use Prediction
	TFT for Traffic Flow Prediction

	Summary
	Appendix A – SignalPop Universal Miner
	Hardware Monitoring

	Appendix B – Dataset Creator Interface
	IXDatasetCreator Interface
	IXDatasetCreator::Name
	IXDatasetCreator::QueryConfiguration
	IXDatasetCreator::Create

	DatasetConfiguration Object
	DatasetConfiguration::IsReadOnly
	DatasetConfiguration::ID
	DatasetConfiguration::Name
	DatasetConfiguration::SelectedGroup
	DatasetConfiguration::Settings
	DatasetConfiguration::Sort
	DatasetConfiguration::Clone
	DatasetConfiguration::SaveToFile
	DatasetConfiguration::LoadFromFile

	DataConfigSettingCollection Object
	DataConfigSetting object
	DataConfigSetting::VerifyInterface
	DataConfigSetting::Name
	DataConfigSetting::Extra
	DataConfigSetting::Value
	DataConfigSetting::Type
	DataConfigSetting::Clone
	DataConfigSetting::ToSaveString
	DataConfigSetting::Parse

	IXDatasetCreatorSettings Interface
	IXDatasetCreatorSettings::VerifyConfiguration
	IXDatasetCreatorSettings::GetCustomSetting

	IXDatasetCreatorProgress Interface
	IXDatasetCreatorProgress::OnProgress
	IXDatasetCreatorProgress::OnCompleted

	CreateProgressArgs Object
	CreateProgressArgs::Aborted
	CreateProgressArgs::PercentComplete
	CreateProgressArgs::PercentCompleteAsText
	CreateProgressArgs::Message
	CreateProgressArgs::Error
	CreateProgressArgs::Abort

	Example Source Code

	References

