
DRAFT 0.6

1

MyCaffe: A Complete C# Re-Write of Caffe, for Windows Programmers

David W. Brown
daveb@signalpop.com

SignalPop LLC.

10/4/2017

Abstract

Over the past few years Caffe [1], from Berkeley
AI Research, has gained a strong following in the
deep learning community with over 10k forks on
the github.com/BLVC/Caffe site. With its well
organized, very modular C++ design it is easy to
work with and very fast. However in the world
of Windows development C# has helped
accelerate development with many of the
enhancements that it offers over C++, such as
garbage collection, a very rich .NET
programming framework and easy database
access via Entity Frameworks [2]. So how can a
C# developer use the advances of C# to take full
advantage of the benefits offered by the Berkeley
Caffe deep learning system? The answer is the
newly released, fully open source, ‘MyCaffe’ for
Windows .NET programmers. MyCaffe is an
open source, complete re-write of Berkeley’s
Caffe, in the C# language.

This article describes the general
architecture of MyCaffe, how it closely follows
the C++ Caffe down to each and every comment
and automated test, yet does so while talking
efficiently to the low level NVIDIA CUDA
hardware to offer a high performance, highly
programmable deep learning system for
Windows .NET programmers.

Introduction
 The goal of MyCaffe is not to replace the
C++ Caffe, but instead to augment the overall
platform by expanding its footprint to Windows
C# programmers in their native programming
language so that this large group of software

developers can more easily develop Caffe models
that then both the C++ Caffe and C# MyCaffe
communities can benefit from. In addition,
MyCaffe allows Windows developers to easily
expand MyCaffe by writing their own new layers
using the C# language.

The following table compares the similarities and
differences between the C++ Caffe and C#
MyCaffe software.

 C++ Caffe C# MyCaffe
All vision layers x x
All recurrent layers x x
All neuron layers x x
All cuDnn layers x x
All common layers x x
All loss layers x x
All data layers x All but 2
All auto tests x x
All solvers x x
All fillers x x
Net object x x
Blob object x x
SyncMem object x x
DataTransform
object

x x

Parallel object(s) x x
NCCL (Nickel) x x
Caffe object x CaffeControl
Database Levledb,

Imdb
MSSQL
(+Express)

Low-level Cuda C++ C++
ProtoTxt Text Compatible

objects
Weights Binary Compatible
GPU Support 1-8 gpus 1-8 gpus*
CPU Support x GPU only

Table 1 Support Comparison

* Multi-GPU support only on headless GPUs.

mailto:daveb@signalpop.com

DRAFT 0.6

2

From Table 1 above you can see that MyCaffe is
a very close match to the C++ Caffe, with the
main differences being in the database support
and the way that MyCaffe accesses the low-level
C++ CUDA code. In addition, MyCaffe is
designed to only run on GPU bases systems and
supports a wide range of NVIDIA cards from the
NVIDIA GeForce 750ti on up to multi-GPU
Tesla based systems running in TCC mode.

Like the C++ Caffe, MyCaffe can be
complied to run using either a ‘float’ or ‘double’
as its base type.

General Architecture
 Four main modules make up the
MyCaffe software: MyCaffe Control, MyCaffe
Image Database, Cuda Control and the low-level
Cuda C++ Code DLL.

MyCaffeControl
MyCaffe
Image

Database
(C# in-memory

db)

MS SQL
Express

(All C#)
SyncMem, Blob,

Layers, Net,
Solvers, Parallel

Cuda

Low-Level
CudaDnnDLL

(C++ DLL)

CudaControl
(C++)

COM

CUDA/cuDnn/cuBlas/
NCCL

Table 2 MyCaffe Architecture

 The MyCaffe Control is the main
interface to software that uses MyCaffe. It mainly
plays the role of the ‘caffe’ object in C++ Caffe
but does so in a way more convenient for C#
Windows programmers for the control is easily
dropped into a windows program and used.

 The MyCaffe Image Database is an in-
memory database used to load datasets or
portions of datasets from a Microsoft SQL or
Microsoft SQL Express database into memory.
In addition to providing the typical database
functionality, the MyCaffe Image Database adds
several useful features to deep learning, namely:
label balancing [3] and image boosting [4]. When
using label balancing the up-sampling occurs at
the database for the database itself organizes all
data by label when loaded thus allowing a random
selection of the label group first and then a
random selection of the image from the label
group so as to ensure that labels are equally
represented when training and not skew training
toward one label or another. Image boosting
allows the user to mark specific images with a
higher boost value to increase the probability that
the marked image is selected during training.
These are optional features that we have found
helpful when training on sparse datasets that tend
to have imbalanced label sets.

 The Cuda Control is a C++ COM Control
that supports COM/OLE Automation
communication. Using the COM support built
into C#, the MyCaffe Control communicates to
the Cuda Control seamlessly by passing
parameters and a function index which is then
used internally to call the appropriate CUDA
based function within the Low-Level CudaDnn
DLL. All parameters are converted from the
COM/OLE Automation format and into native C
types within the Cuda Control thus allowing the
Low-Level CUDA C++ Code to focus on the
low-level programming such as calling CUDA
kernels and/or calling cuDnn and NCCL
functions.

 The Low-Level CudaDnn DLL (different
from, but uses the cuDnn [5] library from
NVIDIA) contains all of the low-level
functionality such as the low level MyCaffe math
functions, calls to cuDnn, calls to NCCL and
several low level t-SNE [6] and PCA [7]
functions provided for speed. In order to manage
the CUDA memory, CUDA Streams and special
object pointers such as the Tensor Descriptors

DRAFT 0.6

3

used by cuDnn, the CudaDnn DLL uses a set of
look-up tables and keeps track of each and every
memory allocation and special pointer allocated.
A look-up index into each table acts as a handle
that is then passed back on up to and used by the
C# code within the MyCaffe Control. Thanks to
the way GPU’s operate with a (mainly) separate
memory space from the CPU, a look-up table
works well for once the memory loaded on the
GPU, you generally want to keep it there for as
long as possible so as to avoid the timing hit
caused by transferring between the GPU and host
memory.

Long h = Allocate Memory (h = 1)

GPU

MyCaffe Control (C#)

memory

Cuda C++ Code

time

Use Memory(h = 1)

Lookup Table

[1] 0x8462

0x8462

h = 1

Table 3 Fast Lookup Table

MyCaffe also employs this same concept to
manage all special data pointers used by the Cuda
and cuDnn libraries where each pointer to an
allocated descriptor or stream is also placed in its
own look-up table that is referenced using an
index (or handle) up in the MyCaffe Control
software. To support some sub-systems such as
NCCL, t-SNE and PCA, internal objects are
allocated to manage the sub-system and stored in
a look-up table thus allowing the CudaDnn DLL
to manage the state of these subsystems while
they are being used.

1 The SignalPop AI Designer version 0.9.0 using the
LOAD_FROM_SERVICE mode was used for all tests with the
dataset fully loaded in memory.
2 Run on GPU with monitor plugged in.

Benchmarks
In deep learning, speed is important.

For that reason, we have run the MyCaffe on
several Windows configurations to show how
well the technology stacks up1.

The following benchmarks were run on
an i7-5960 8-core 3.00GHZ Dell/Alienware
Area-51 R2 Computer running Windows 7 with
32GB of memory loaded with an NVIDIA Titan
X (Maxwel) GPU in WDM2 mode and CUDA 9.

Model GPU
Memory
Used

Image
Size

Batch
Size

Fwd/Bwd
Average
Time
(ms.)

GoogleNet n/a 224x224 1283 est 800 ms
GoogleNet 9.01 GB 224x224 64 400 ms
GoogleNet 5.32 GB 224x224 32 260 ms
GoogleNet 3.48 GB 224x224 16 230 ms
VGG-16 8.57 GB 224x224 32 580 ms
VGG-16 5.51 GB 224x224 16 312 ms
GoogleNet 2.36 GB 56x56 24 166 ms
AlexNet 1.32 GB 32x32 128 35 ms

The following benchmarks were run on
the same Dell/Alienware Area-51 R2 Computer
(i7-5960 8-core 3.00GHZ) running Windows 7
with 32GB of memory but this time loaded with
a NVIDIA Titan Xp (Pascal) GPU in TCC mode
and CUDA 9.

Model GPU
Memory
Used

Image
Size

Batch
Size

Fwd/Bwd
Average
Time
(ms.)

GoogleNet n/a 224x224 1284 est 570 ms
GoogleNet 8.91 GB 224x224 64 285 ms
GoogleNet 4.73 GB 224x224 32 140 ms
GoogleNet 3.24 GB 224x224 16 65 ms
VGG-16 7.56 GB 224x224 32 280 ms
VGG-16 5.28 GB 224x224 16 138 ms
GoogleNet 2.09 GB 56x56 24 38 ms
AlexNet 1.05 GB 32x32 128 37 ms

Comparison benchmarks (run in 2014) show that
C++ Caffe using an older version of cuDnn
running GoogleNet on an NVIDIA K40c with a

3 Estimated by multiplying batch 64 timing x2.
4 Estimated by multiplying batch 64 timing x2.

DRAFT 0.6

4

128 batch size had a running total time of 1688.8
ms. for the forward + backward pass [8].

This truly shows the great strides that
NVIDIA has made both in hardware
improvements with their Titan Xp (Pascal) GPU
and software improvements to their CUDA and
cuDnn libraries with CUDA 9.0 and cuDnn 7.0.
And the new Volta hardware should only be
better - what a time to be involved in AI!

But how does MyCaffe stack up on every day
GPU’s such as the 1060 that is in many new
laptops for the highly used 750TI? The following
benchmarks show what these more standard PC
systems can do as well.

The following benchmarks were run on an i7
6700HQ 6-core 2.60GHZ Alienware 15 Laptop
running Windows 10 with 8 GB of memory
loaded with an NVIDIA GTX 1060 GPU in
WDM5 mode with CUDA 9.

Model GPU
Memory
Used

Image
Size

Batch
Size

Fwd/Bwd
Average
Time
(ms.)

GoogleNet 3.01 GB 56x56 24 88 ms
AlexNet 1.98 GB 32x32 128 48 ms

The following benchmarks were run on an i7
x980 6-core 3.33GHZ HP Pavilion Elite running
Windows 7 with 24 GB of memory loaded with
an NVIDIA 750ti GPU in WDM6 mode with
CUDA 9.

Model GPU
Memory
Used

Image
Size

Batch
Size

Fwd/Bwd
Average
Time
(ms.)

GoogleNet 2.03 GB 56x56 24 268 ms
AlexNet 0.94 GB 32x32 128 134 ms

Compatibility
 Since our goal is to expand the target
market for the C++ Caffe platform to the general

C# Windows programmer, we have strived to
make sure that MyCaffe maintains compatibility
with the C++ Caffe platform prototxt scripts and
binary weight file formats. To do this MyCaffe
performs its own parsing of the prototxt files into
internal C# parameter objects that closely match
those generated by Googles ProtoTxt software. In
addition each parameter object is designed to
print itself out in the very same ProtoTxt format
from which it was parsed. Using this
methodology allows MyCaffe to maintain
compatibility with the same prototxt files used by
the C++ Caffe.

 With regard to the weigh files, MyCaffe
stores weight files using the same Google
ProtoBuf binary format as the C++ Caffe
allowing MyCaffe to use existing .caffemodel
files created using the C++ Caffe.

Summary
 It is great to see fantastic software such
as Caffe out in the open source community. As a
thank you, we wanted to contribute back to that
same community with the ‘MyCaffe’ project to
help an even larger group of programmers use
this great technology.

 For more information on the C++ Caffe,
see the Berkeley AI Research site at
http://caffe.berkeleyvision.org/.

 For more information on the Windows
version of MyCaffe written in C#, see us on
GitHub at https://github.com/mycaffe. For easy
integration into your existing C# applications,
just search for MyCaffe on NuGet or go to
https://www.nuget.org/packages?q=MyCaffe.
And for more information on innovative products
that make designing, editing, training, testing and
debugging your AI models easier, see us at
https://www.signalpop.com.

5 Run on GPU with monitor connected. 6 Run on GPU with monitor connected.

http://caffe.berkeleyvision.org/
https://github.com/mycaffe
https://www.nuget.org/packages?q=MyCaffe
https://www.signalpop.com/

DRAFT 0.6

5

References

[1] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama and T. Darrell,
"Caffe: Convolution Architecture for Fast Feature Embedding," arXiv preprint arXiv:1408.5093,
2014.

[2] B. Johnson, Professional Visual Studio 2015, Indianapolis: John Wiley & Sons, Inc., 2015.

[3] F. Provost, "Machine Learning from Imbalanced Data Sets 101," 2000.

[4] R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms, Cambridge: The MIT Press,
2012.

[5] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen and J. Tran, "cuDNN: Efficient Primitives for
Deep Learning," arXiv:1410.0759v2 , pp. 1-8, 2104.

[6] L. van der Maaten and G. Hinton, "Visualizing Data using t-SNE," Journal of Machine Learning
Research, no. 9, pp. 1-27, 2008.

[7] M. Andrecut, "Parallel GPU Implementation of Iterative PCA Algorithms," arXiv:0811.1081 [q-
bio.QM], pp. 1-45, 2008.

[8] sguada, "Caffe Timings for GoogleNet, VGG, AlexNet with cuDNN," [Online]. Available:
https://github.com/Bvlc/caffe/issues/1317.

	MyCaffe: A Complete C# Re-Write of Caffe, for Windows Programmers
	Introduction
	General Architecture
	Benchmarks
	Compatibility
	Summary

	References

