
1

MyCaffe: A Complete C# Re-Write of Caffe with Reinforcement Learning

David W. Brown
daveb@signalpop.com

SignalPop LLC.

10/4/2017

(Updated 9/23/2018)

Abstract

Over the past few years Caffe [1], from Berkeley
AI Research, has gained a strong following in the
deep learning community with over 15k forks on
the github.com/BLVC/Caffe site. With its well
organized, very modular C++ design it is easy to
work with and very fast. However, in the world
of Windows development, C# has helped
accelerate development with many of the
enhancements that it offers over C++, such as
garbage collection, a very rich .NET
programming framework and easy database
access via Entity Frameworks [2]. So how can a
C# developer use the advances of C# to take full
advantage of the benefits offered by the Berkeley
Caffe deep learning system? The answer is the
fully open source, ‘MyCaffe’ for Windows .NET
programmers. MyCaffe is an open source,
complete re-write of Berkeley’s Caffe, in the C#
language.

This article describes the general
architecture of MyCaffe including the newly
added MyCaffeTrainerRL for Reinforcement
Learning. In addition, this article discusses how
MyCaffe closely follows the C++ Caffe, while
talking efficiently to the low level NVIDIA CUDA
hardware to offer a high performance, highly
programmable deep learning system for
Windows .NET programmers.

Introduction
 The goal of MyCaffe is not to replace the
C++ Caffe, but instead to augment the overall
platform by expanding its footprint to Windows

C# programmers in their native programming
language so that this large group of software
developers can easily develop Caffe models that
both the C++ Caffe and C# MyCaffe
communities benefit from. MyCaffe also allows
Windows developers to expand MyCaffe with
their own new layers using the C# language.

C++ Caffe and C# MyCaffe Comparison Table
 C++ Caffe C# MyCaffe
All vision layers x x
All recurrent layers x x
All neuron layers x x
All cuDnn layers x x
All common layers x x
All loss layers x x
All data layers x All but 2
All auto tests x x
All solvers x x
All fillers x x
Net object x x
Blob object x x
SyncMem object x x
DataTransform
object

x x

Parallel object(s) x x
NCCL (Nickel) x x
Caffe object x CaffeControl
Database Levledb,

Imdb
MSSQL
(+Express)

Low-level Cuda C++ C++
ProtoTxt Text Compatible
Weights Binary Compatible
GPU Support 1-8 gpus 1-8 gpus*
CPU Support x GPU only

Table 1 Support Comparison

* Multi-GPU support only on headless GPUs.

mailto:daveb@signalpop.com

2

From Table 1 (above) you can see that MyCaffe
is a very close match to the C++ Caffe, with the
main differences being in the database support
and the way that MyCaffe accesses the low-level
C++ CUDA code. In addition, MyCaffe is
designed to only run on GPU bases systems and
supports a wide range of NVIDIA cards from the
NVIDIA GeForce 750ti on up to multi-GPU
Tesla based systems running in TCC mode.

Like the C++ Caffe, MyCaffe can be
complied to run using either a ‘float’ or ‘double’
as its base type.

MyCaffe General Architecture
 Four main modules make up the
MyCaffe software: MyCaffe Control, MyCaffe
Image Database, Cuda Control and the low-level
Cuda C++ Code DLL.

MyCaffeControl
MyCaffe
Image

Database
(C# in-memory

db)

MS SQL
Express

(All C#)
SyncMem, Blob,

Layers, Net,
Solvers, Parallel

Cuda

Low-Level
CudaDnnDLL

(C++ DLL)

CudaControl
(C++)

COM

CUDA/cuDnn/cuBlas/
NCCL

Table 2 MyCaffe Architecture

 The MyCaffe Control is the main
interface to software that uses MyCaffe. It mainly
plays the role of the ‘caffe’ object in C++ Caffe
but does so in a way more convenient for C#
Windows programmers for the control is easily
dropped into a windows program and used.

 The MyCaffe Image Database is an in-
memory database used to load datasets, or
portions of datasets, from a Microsoft SQL, or
Microsoft SQL Express database into memory.
In addition to providing the typical database
functionality, the MyCaffe Image Database adds
several useful features to deep learning, namely:
label balancing [3] and image boosting [4]. When
using label balancing the up-sampling occurs at
the database. The database itself organizes all
data by label when loaded, thus allowing a
random selection of the label group first, and then
a random selection of the image from the label
group, so as to ensure that labels are equally
represented when training and not skew training
toward one label or another. Image boosting
allows the user to mark specific images with a
higher boost value to increase the probability that
the marked image is selected during training.
These are optional features that we have found
helpful when training on sparse datasets that tend
to have imbalanced label sets.

 The Cuda Control is a C++ COM Control
that supports COM/OLE Automation
communication. Using the COM support built
into C#, the MyCaffe Control communicates to
the Cuda Control seamlessly by passing
parameters and a function index, which is then
used internally to call the appropriate CUDA
based function within the Low-Level CudaDnn
DLL. All parameters are converted from the
COM/OLE Automation format and into native C
types within the Cuda Control thus allowing the
Low-Level CUDA C++ Code to focus on the
low-level programming such as calling CUDA
kernels and/or calling cuDnn and NCCL
functions.

 The Low-Level CudaDnn DLL (different
from, but uses the cuDnn [5] library from
NVIDIA) contains all of the low-level
functionality such as the low level MyCaffe math
functions, calls to cuDnn, calls to NCCL and
several low level t-SNE [6] and PCA [7]
functions provided for speed. In order to manage
the CUDA memory, CUDA Streams and special
object pointers, such as the Tensor Descriptors

3

used by cuDnn, the CudaDnn DLL uses a set of
look-up tables and keeps track of each and every
memory allocation and special pointer allocated.
A look-up index into each table acts as a handle
that is then passed back on up to, and used by, the
C# code within the MyCaffe Control. Thanks to
the way GPU’s operate with a (mainly) separate
memory space from the CPU, a look-up table
works well for once the memory is loaded on the
GPU, you generally want to keep it there for as
long as possible so as to avoid the timing hit
caused by transferring between the GPU and host
memory.

Long h = Allocate Memory (h = 1)

GPU

MyCaffe Control (C#)

memory

Cuda C++ Code

time

Use Memory(h = 1)

Lookup Table

[1] 0x8462

0x8462

h = 1

Table 3 Fast Lookup Table

MyCaffe also employs this same concept to
manage all special data pointers used by the Cuda
and cuDnn libraries, where each pointer to an
allocated descriptor, or stream, is also placed in
its own look-up table that is referenced using an
index (or handle) up in the MyCaffe Control
software. To support some sub-systems, such as
NCCL, t-SNE and PCA, internal objects are
allocated to manage the sub-system and stored in
a look-up table thus allowing the CudaDnn DLL
to manage the state of these subsystems while
they are being used.

1 The SignalPop AI Designer version 0.9.2.188 using the
LOAD_FROM_SERVICE mode was used for all tests.
2 Run on GPU with monitor plugged in.

Benchmarks
In deep learning, speed is important.

For that reason, we have run the MyCaffe on
several Windows configurations to show how
well the technology stacks up1.

The following benchmarks were run on
an i7-6950 10-core 3.00GHZ Dell/Alienware
Area-51 R2 Computer running Windows 10 Pro
with 64GB of memory loaded with an NVIDIA
Titan Xp (Pascal) GPU running in TCC2 mode
using CUDA 9.2.148/cuDNN 7.2.1 (9/12/2018).

Model GPU
Memory
Used

Image
Size

Batch
Size

Fwd/Bwd
Average
Time
(ms.)

GoogleNet n/a 227x227 1283 est 610 ms
GoogleNet 7.76 GB 227x227 64 305 ms
GoogleNet 4.55 GB 227x227 32 160 ms
GoogleNet 2.92 GB 227x227 16 75 ms
VGG-16 7.91 GB 227x227 32 350 ms
VGG-16 5.71 GB 227x227 16 196 ms
GoogleNet 3.29 GB 56x56 24 67 ms
AlexNet 1.02 GB 32x32 128 45 ms

Comparison benchmarks (run in 2014) show that
C++ Caffe using an older version of cuDnn
running GoogleNet on an NVIDIA K40c with a
128 batch size had a running total time of 1688.8
ms. for the forward + backward pass [8].

But how does MyCaffe stack up on lower-end
GPU’s such as the 1060 typically found in laptops
or the $170 NVIDIA 1050ti? The following
benchmarks show what these more standard PC
systems can do, as well.

The following benchmarks were run on an i7
6700HQ 6-core 2.60GHZ Alienware 15 Laptop
running Windows 10 with 8 GB of memory
loaded with an NVIDIA GTX 1060 GPU in
WDM4 mode with CUDA 9.2.148/cuDNN 7.2.1.

Model GPU
Memory
Used

Image
Size

Batch
Size

Fwd/Bwd
Average
Time
(ms.)

GoogleNet 4.20 GB 56x56 24 180 ms
AlexNet 1.61 GB 32x32 128 77 ms

3 Estimated by multiplying batch 64 timing x2.
4 Run on GPU with monitor connected.

4

The following benchmarks were run on an Intel-
Celeron 2.90GHZ system running Windows 10
Pro with 12 GB of memory loaded with an
NVIDIA 1050 GPU running in WDM5 mode
with CUDA 9.2.148/cuDNN 7.2.1.

Model GPU
Memory
Used

Image
Size

Batch
Size

Fwd/Bwd
Average
Time
(ms.)

GoogleNet 3.84 GB 56x56 24 285 ms
AlexNet 1.46 GB 32x32 128 125 ms

Compatibility
 Since our goal is to expand the target
market for the C++ Caffe platform to the general
C# Windows programmer, we have strived to
make sure that MyCaffe maintains compatibility
with the C++ Caffe platform prototxt scripts and
binary weight file formats. To do this, MyCaffe
performs its own parsing of the prototxt files into
internal C# parameter objects that closely match
those generated by Googles ProtoTxt software. In
addition each parameter object is designed to
print itself out in the very same ProtoTxt format
from which it was parsed. Using this
methodology allows MyCaffe to maintain
compatibility with the same prototxt files used by
the C++ Caffe.

 With regard to the weigh files, MyCaffe
stores weight files using the same Google
ProtoBuf binary format as the C++ Caffe
allowing MyCaffe to use existing .caffemodel
files created using the C++ Caffe.

Reinforcement Learning Support
 MyCaffe recently added support for
policy gradient reinforcement learning [9] which
runs on a Cart-Pole written in C# inspired by the
version by OpenAI [10] and originally created by
Sutton et al. [11] [12]. A new component called
the MyCaffeTrainerRL provides the basic
architecture for training a MyCaffe component
using the reinforcement learning style of training.

5 Run on GPU with monitor connected.

MyCaffeTrainer
RL

Control

(overrides training
and testing

functionality)

MyCaffeControl

(All C#)
SyncMem, Blob,

Layers, Net,
Solvers, Parallel

Cuda

Figure 1 MyCaffeTrainerRL uses MyCaffe

When using the MyCaffeTrainerRL, the same
MyCaffe solver, network and model are used, but
trained with a reinforcement learning method of
training. The main requirements are that the
model use the MemoryData layer for data input,
and the MemoryLoss layer to calculate the loss
and gradients. For example the Sigmoid based
model below uses both where the Sigmoid layer
produces a probability used to determine one of
two actions to take.

MemoryData

InnerProduct ReLU

InnerProduct

Sigmoid MemoryLoss

state

Aprob

Bottom.diff

Figure 2 Policy Gradient Reinforcement Learning Model
with Sigmoid

Alternatively, a Softmax based model may be
used as well when more than two actions are
needed.

5

MemoryData

InnerProduct ReLU

InnerProduct

Softmax MemoryLoss

state

probabilities

Bottom.diff

Figure 3 Policy Gradient Reinforcement Learning Model
with Softmax

When training either model, the type of model is
detected by the MyCaffeTrainerRL which hooks
into the loss functionality of the MemoryLoss
layer and takes care of calculating the losses and
setting the gradients on the Bottom.diff of the
layer attached to the Memory Loss layer. The
back-propagation then propagates the Bottom.diff
on up the network, from bottom to top, as it does
with any other model.

For more details on how this works, see Appendix
A (Sigmoid) or Appendix B (Softmax).

Summary
 It is great to see fantastic software such
as Caffe out in the open source community. As a
thank you, we wanted to contribute back to that
same community with the ‘MyCaffe’ project to
help an even larger group of programmers use
this great technology. And now with the
MyCaffeTrainerRL, it is even easier to create
reinforcement learning solutions with MyCaffe.

 For more information on the C++ Caffe,
see the Berkeley AI Research site at
http://caffe.berkeleyvision.org/.

 For more information on the Windows
version of MyCaffe written in C#, see us on
GitHub at https://github.com/mycaffe. For easy
integration into your existing C# applications,
just search for MyCaffe on NuGet or go to
https://www.nuget.org/packages?q=MyCaffe.

And for more information on innovative products
that make designing, editing, training, testing and
debugging your AI models easier, see us at
https://www.signalpop.com.

http://caffe.berkeleyvision.org/
https://github.com/mycaffe
https://www.nuget.org/packages?q=MyCaffe
https://www.signalpop.com/

6

References

[1] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama and T. Darrell,
"Caffe: Convolution Architecture for Fast Feature Embedding," arXiv preprint arXiv:1408.5093,
2014.

[2] B. Johnson, Professional Visual Studio 2015, Indianapolis: John Wiley & Sons, Inc., 2015.

[3] F. Provost, "Machine Learning from Imbalanced Data Sets 101," 2000.

[4] R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms, Cambridge: The MIT Press,
2012.

[5] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen and J. Tran, "cuDNN: Efficient Primitives for
Deep Learning," arXiv:1410.0759v2 , pp. 1-8, 2104.

[6] L. van der Maaten and G. Hinton, "Visualizing Data using t-SNE," Journal of Machine Learning
Research, no. 9, pp. 1-27, 2008.

[7] M. Andrecut, "Parallel GPU Implementation of Iterative PCA Algorithms," arXiv:0811.1081 [q-
bio.QM], pp. 1-45, 2008.

[8] sguada, "Caffe Timings for GoogleNet, VGG, AlexNet with cuDNN," [Online]. Available:
https://github.com/Bvlc/caffe/issues/1317.

[9] A. Karpathy, "Deep Reinforcement Learning: Pong from Pixels," Andrej Karpathy blog, 31 May
2016. [Online]. Available: http://karpathy.github.io/2016/05/31/rl/.

[10] OpenAI, "CartPole-V0," OpenAI, [Online]. Available: https://gym.openai.com/envs/CartPole-v0/.

[11] R. e. a. Sutton, "http://incompleteideas.net/sutton/book/code/pole.c," 1983. [Online]. Available:
https://perma.cc/C9ZM-652R.

[12] A. G. Barto, R. S. Sutton and C. W. Anderson, "Neuronlike adaptive elements that can solve
difficult learning control problems," IEEE, Vols. SMC-13, no. 5, pp. 834-846, September 1983.

[13] A. Karpathy, "CS231n Convolutional Neural Networks for Visual Recognition," Stanford
University, [Online]. Available: http://cs231n.github.io/neural-networks-2/#losses.

[14] A. Karpathy, "karpathy/pg-pong.py," GitHub, 2016. [Online]. Available:
https://gist.github.com/karpathy/a4166c7fe253700972fcbc77e4ea32c5.

7

Appendix A – Sigmoid based Reinforcement Learning with MyCaffe

The new MyCaffeTrainerRL extends MyCaffe
by adding the ability to easily train policy
gradients with reinforcement learning. When
using the MyCaffeTrainerRL with two actions,
the following model architecture is used.

MemoryData

InnerProduct ReLU

InnerProduct

Sigmoid MemoryLoss

state

Aprob

Bottom.diff

Figure 4 Sigmoid based Policy Gradient Reinforcement Loss
Model

Each model used with the MyCaffeTrainerRL, is
required to use both the MemoryData layer for
input, and the MemoryLoss layer to calculate the
gradients – the MyCaffeTrainerRL actually takes
care of adding the input to the MemoryData layer
and automatically calculates the loss and
gradients by hooking into the MemoryLoss layer.

The gradients are then fed back up through the
Bottom.diff of the layer feeding into the
MemoryLoss layer, which in this case is the
bottom InnerProduct layer.

The main limitation of a Sigmoid based model is
that it only supports two actions. For more than
two actions, you will want to use a Softmax based
model. The Sigmoid model is faster than the
Softmax model, so if you only have two actions,
it is recommended – see Appendix B (below) to
see how the Softmax based model works.

Detailed Walk Through
The diagram below shows how each step of the MyCaffeTrainerRL works to provide the reinforcement
learning with a Sigmoid based model. During this process, the following steps take place:

0.) At the start, the Environment (such as Cart-Pole) is reset, which returns our initial state – state0.
1.) The state0 is fed through the network (and its Model) in a forward pass…
2.) …to produce the probability used to determine the action - the probability produced is called Aprob.
3.) The action is set as follows: action = (random < Aprob) ? 0 : 1, which sets the action to zero if the

random number is less than Aprob and to 1 otherwise.
4.) The action is then fed to the Environment, which is directed to run the action in the next Step of

the simulation.
5.) The new Step produces a new state, state1 and a reward for taking the action (in the case of Cart-

Pole, after taking the action, the reward is set to 0 if the cart runs off the track or the pole angle
exceeds 20 degrees, and to 1 if the pole is still balancing). The previous state (state0), the action
taken, the Aprob used to calculate the action and the reward for running the action are all stored in
a Memory that collectively contains a full ‘experience’ once the simulation completes the round.

6.) If the simulation is not complete, the state0 is set to state1 and we continue back up to step 1 above.
7.) Once the simulation is complete (e.g. the Environment at step 4 returns done = true) the episode is

processed by training the network on it.
8.) At the start of training, the initial gradient is calculated as follows: Dlogps = (action==0) ? 1-Aprob

: 0 – Aprob, which will help move the weights toward what the action should be [13] [14] (for more
on this see Sigmoid Gradient Calculation below).

8

9.) Next, we calculate the discounted rewards, which are discounted backwards in time so as to give
older steps higher weighting than newer steps, which helps encourage larger and larger episodes.

10.) The discounted rewards are multiplied by the policy gradients (Dlogps) to produce a set of
modulated gradients.

11.) The modulated gradients are set as the Bottom.diff in the layer connected to the MemoryLoss layer
(which in this case is the bottom InnerProduct layer), and then the backward pass back propagates
the diff on up through the network. NOTE: the gradients of the network are accumulated until we
hit a batch_size number of episodes, at which time the gradients are applied to the weights.

12.) The Environment is reset to start a new simulation and we continue back up to step 1 to repeat the
process.

Training

On batch_size = 10 episodes,
Apply gradients (diff -> data)

ep
iso

de

Environment

Modelstate0 Aprob action(Rand < Aprob ? 0 : 1)

Environment
state1, reward, done

Memory

state0 action Aprob reward

: : : :

Step 0

Step 1

Step n-1

Dlogps

: :

Action=0 ?
1 - Aprob : 0 - Aprob

Discounted
Rewards

Policy Gradients Discounted
RewardsX

Bottom.diff
(gradients)

Model
Gradients accumulated

Backward pass

Forward pass

when done

2

4

5

7

8

9

10

11

0

1

Environmentstate0

state0 = state1

Reset

Reset

Step

6

3

11

12

Figure 5 Reinforcement Learning Process with Sigmoid

Sigmoid Gradient Calculation
The key to the Sigmoid based policy gradient reinforcement learning is in the calculation of the gradients
applied to the Bottom.diff. There are three formulas that perform this task:

action = (random < Aprob) ? 0 : 1

Dlogps = (action==0) ? 1-Aprob : 0 – Aprob // determine the gradient

Bottom.diff = Dlogps * discounted rewards // modulate the gradient

9

How does this actually work? The following table shows what happens to the data in four examples (rows)
as the data moves through the network.

Figure 6 Sigmoid Gradient Calculation

Staring with column 1, let’s trace through what actually happens to the data in the network, after which,
you will hopefully better understand how the three functions above actually work to move the weights
toward values that calculate the results we want.

At column 1, we first calculate Aprob by running the state through a network forward pass which is shown
in steps 1 & 2 above.

Next, at column 2, the action is calculated using action = (random < Aprob) ? 0 : 1, also shown in step 3
above.

At column 3, the initial gradient Dlogps is calculated with Dlogps = (action==0) ? 1-Aprob : 0 – Aprob, also
shown in step 8 above.

At column 4, we multiply -1 by Dlogps to compensate for the fact that MyCaffe (and Caffe) subtract the
gradients (Bottom.diff) from the weights.

At column 5 in our example, let’s assume that the weight value is set to 1.0.

The new weight in column 6 is calculated with new weight = old weight – diff, and this actually occurs
during the Solver ApplyUpdate shown in step 11 above.

To see what impact the weight update actually had, let’s assume that our input data in column 7 is the same
Aprob that we previously had as output, for we are trying to drive our weights to values that eventually
produce the ground truths shown in rows 1 and 4.

Comparing the new result in column 9, produced with new result = data * new weight with the old result
in column 8, we can see that our new result values are indeed moving closer to our ground truths. In row
2, our old result of 0.1 moves to 0.09 – a little closer to the ground truth Aprob value of 0 (which would
always produce an action of 1), and in Row 3, our old result of 0.9 moves to 0.99 – a little closer to the
ground truth Aprob value of 1 (which would always produce an action of 0).

As shown above, the Dlogps does indeed move our weights in the direction that also moves the final result
toward our ground truth values.

col. 1 col. 2 col. 3 col. 4 col. 5 col. 6 col. 7 col. 8 col. 9

(random<ap)?0:1 (a=0)?1-ap:0-ap old new old new
Aprob (ap) Action (a) Dlogps diff weight weight data result result

row 1 0 1 0 0 1 1 0 0 0
row 2 0.1 1 -0.1 0.1 1 0.9 0.1 0.1 0.09 decreased toward 0
row 3 0.9 0 0.1 -0.1 1 1.1 0.9 0.9 0.99 increased toward 1
row 4 1 0 0 0 1 1 1 1 1

result = weight * data

10

Appendix B – Softmax based Reinforcement Learning with MyCaffe

The MyCaffeTrainerRL that extends MyCaffe,
by adding the ability to easily train policy
gradients with reinforcement learning, also
supports Softmax based models. When using the
MyCaffeTrainerRL with more than two actions,
the following general model architecture is used.

MemoryData

InnerProduct ReLU

InnerProduct

Softmax MemoryLoss

state

probabilities

Bottom.diff

Figure 7 Softmax based Policy Gradient Reinforcement Loss
Model

Just like the Sigmoid model, Softmax models are
also required to use both the MemoryData layer
for input, and the MemoryLoss layer to calculate
the gradients – the MyCaffeTrainerRL actually
takes care of adding the input to the MemoryData
layer and automatically calculates the loss and
gradients by hooking into the MemoryLoss layer.

With the Softmax model, the MyCaffeTrainerRL
internally uses a SoftmaxCrossEntropyLoss layer
to calculate the initial gradients that are then fed
back up through the Bottom.diff of the layer
feeding into the MemoryLoss layer, which in this
case is the bottom InnerProduct layer.

Although slightly slower than the Sigmoid based
model, Softmax based models easily support
more than two actions, which is required to solve
certain problems.

Detailed Walk Through
The diagram below shows how each step of the MyCaffeTrainerRL works to provide the reinforcement
learning with a Softmax based model. During this process, the following steps take place:

0.) At the start, the Environment (such as Cart-Pole) is reset, which returns our initial state – state0.
1.) The state0 is fed through the network (and its Model) in a forward pass…
2.) …to produce a set of probabilities (one per action) used to determine the action – these our outputs

of the Softmax layer.
3.) The probabilities returned by the Softmax layer are treated as a probability distribution used to

determine the actual action.
4.) The action is then fed to the Environment, which is directed to run the action in the next Step of

the simulation.
5.) The new Step produces a new state, state1 and a reward for taking the action (in the case of Cart-

Pole, after taking the action, the reward is set to 0 if the cart runs off the track or the pole angle
exceeds 20 degrees, and to 1 if the pole is still balancing). The previous state (state0), the action
taken and the reward for running the action are all stored in a Memory that collectively contains a
full ‘experience’ once the simulation completes the round.

6.) If the simulation is not complete, the state0 is set to state1 and we continue back up to step 1 above.
7.) Once the simulation is complete (e.g. the Environment at step 4 returns done = true) the episode is

processed by training the network on it.

11

8.) At the start of training, the initial gradient is calculated using an internal SoftmaxCrossEntropyLoss
layer which produces the initial gradients that help move the weights toward what the action should
be [13] [14] (for more on this see Softmax Gradient Calculation below).

9.) Next, we calculate the discounted rewards, which are discounted backwards in time so as to give
older steps higher weighting than newer steps, which helps encourage larger and larger episodes.

10.) The discounted rewards are multiplied by the policy gradients (SoftmaxCrossEntropyLoss
gradients) to produce a set of modulated gradients.

11.) The modulated gradients are set as the Bottom.diff in the layer connected to the MemoryLoss layer
(which in this case is the bottom InnerProduct layer), and then the backward pass back propagates
the diff on up through the network. NOTE: the gradients of the network are accumulated until we
hit a batch_size number of episodes, at which time the gradients are applied to the weights.

12.) The Environment is reset to start a new simulation and we continue back up to step 1 to repeat the
process.

Training

On batch_size = 10 episodes,
Apply gradients (diff -> data)

ep
iso

de

Environment

Modelstate0 probabilities action

(select action from
probability distribution)

Environment
state1, reward, done

Memory

state0 action reward

: : :

Step 0

Step 1

Step n-1

CE gradient

: :

SoftmaxCrossEntropy
Loss

Discounted
Rewards

Policy Gradients Discounted
RewardsX

Bottom.diff
(gradients)

Model
Gradients accumulated

Backward pass

Forward pass

when done

2

4

5

7

8

9

10

11

0

1

Environmentstate0

state0 = state1

Reset

Reset

Step

6

3

11

12

Figure 8 Reinforcement Learning Process with Softmax

Note, the training process of both the Softmax based and Sigmoid based models are basically the same
except in how the gradients are calculated. The Softmax uses the SoftmaxCrossEntropyLoss to calculate
the initial gradients, whereas the Sigmoid calculates the initial gradients directly (e.g. Dlogps).

12

Softmax Gradient Calculation
The key to the Softmax based policy gradient reinforcement learning is in the calculation of the gradients
applied to the Bottom.diff. There are three formulas that perform this task:

softmax = calculated from action logits.

Dlogps = softmax - target // determine the gradient

Bottom.diff = Dlogps * discounted rewards // modulate the gradient

How does this actually work? The following table shows what happens to the data in four examples (rows)
as the data moves through the network.

Figure 9 Softmax Gradient Calculation

Staring with column 1, let’s trace through what actually happens to the data in the network, after which,
you will hopefully better understand how the three functions above actually work to move the weights
toward values that calculate the results we want.

At column 1, we first calculate probabilities by running the state through a network forward pass which is
shown in steps 1 & 2 above – the probabilities are the outputs of the Softmax layer.

Next, at column 2, the action is calculated by treating the probabilities as a probability distribution and
selecting the action from the distribution via randomly generated number, also shown in step 3 above.

At column 3, the initial gradients for both action 0 and action 1 are calculated using the internal
SoftmaxCrossEntropyLoss layer, which essentially subtracts the target from the Softmax output.

At column 4, we directly set the Bottom.diff to the gradients calculated in column 3.

At column 5 in our example, let’s assume that the weight value is set to 1.0.

The new weight in column 6 is calculated with new weight = old weight – diff, and this actually occurs
during the Solver ApplyUpdate shown in step 11 above.

To see what impact the weight update actually had, let’s assume that our input data in column 7 is the same
as the probabilities that we previously had as the Softmax output, for we are trying to drive our weights to
values that eventually produce the ground truths shown in rows 1 and 4.

Comparing the new result in columns 10 and 11, produced with new result = data * new weight with the
old results in column 8 and 9, we can see that our new result values are indeed moving closer to our ground
truths. In row 2, column 8, our old result of 0.1 moves to 0.09 – a little closer to the ground truth probability
value of 0 (which would always produce an action of 1), and in row 3, column 8, our old result of 0.9
moves to 0.99 – a little closer to the ground truth probability value of 1 (which would always produce an
action of 0).

col. 1 col. 2 col. 3 col. 3 col. 4 col. 5 col. 6 col. 7 col. 8 col. 9 col. 10 col. 11

probabilities (from Softmax) targets softmax-target softmax-target old new old rew result new result
action 0 action 1 action 0 action 1 gradient 0 gradient 1 diff 0 diff 1 weight weight data result action 0 action 1

row 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1
row 2 0.1 0.9 0 1 0.1 -0.1 0.1 -0.1 1 1 0.9 1.1 0.1 0.9 0.1 0.9 0.09 0.99
row 3 0.9 0.1 1 0 -0.1 0.1 -0.1 0.1 1 1 1.1 0.9 0.9 0.1 0.9 0.1 0.99 0.09
row 4 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0

decreases toward 0
increases toward 1

13

As shown above, the SoftmaxCrossEntropyLoss layer does indeed move our weights in the direction that
also moves the final result toward our ground truth values.

To see an example of the MyCaffeTrainerRL working, check out the video of Cart-Pole balancing for over
a minute at https://www.signalpop.com/examples. And, if you would like to try out the MyCaffe
reinforcement learning, just download the MyCaffe Nuget package for Visual Studio, or install the MyCaffe
Test Application from GitHub.

The policy gradient reinforcement learning trainer source code is available on GitHub.

https://www.signalpop.com/examples
https://www.nuget.org/packages?q=MyCaffe
https://github.com/MyCaffe/MyCaffe/releases
https://github.com/MyCaffe/MyCaffe/releases
https://github.com/MyCaffe/MyCaffe/blob/master/MyCaffe.trainers/pg.mt/TrainerPG.cs

	MyCaffe: A Complete C# Re-Write of Caffe with Reinforcement Learning
	Introduction
	C++ Caffe and C# MyCaffe Comparison Table

	MyCaffe General Architecture
	Benchmarks
	Compatibility
	Reinforcement Learning Support
	Summary

	References
	Appendix A – Sigmoid based Reinforcement Learning with MyCaffe
	Detailed Walk Through
	Sigmoid Gradient Calculation

	Appendix B – Softmax based Reinforcement Learning with MyCaffe
	Detailed Walk Through
	Softmax Gradient Calculation

