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Abstract 

Over the past few years Caffe [1], from Berkeley 
AI Research, has gained a strong following in the 
deep learning community with over 15k forks on 
the github.com/BLVC/Caffe site.  With its well 
organized, very modular C++ design it is easy to 
work with and very fast.   However, in the world 
of Windows development, C# has helped 
accelerate development with many of the 
enhancements that it offers over C++, such as 
garbage collection, a very rich .NET 
programming framework and easy database 
access via Entity Frameworks [2].  So how can a 
C# developer use the advances of C# to take full 
advantage of the benefits offered by the Berkeley 
Caffe deep learning system? The answer is the 
fully open source, ‘MyCaffe’ for Windows .NET 
programmers.  MyCaffe is an open source, 
complete re-write of Berkeley’s Caffe, in the C# 
language.   

This article describes the general 
architecture of MyCaffe including the newly 
added MyCaffeTrainerRL for Reinforcement 
Learning. In addition, this article discusses how 
MyCaffe closely follows the C++ Caffe, while 
talking efficiently to the low level NVIDIA CUDA 
hardware to offer a high performance, highly 
programmable deep learning system for 
Windows .NET programmers. 

Introduction 
 The goal of MyCaffe is not to replace the 
C++ Caffe, but instead to augment the overall 
platform by expanding its footprint to Windows 

C# programmers in their native programming 
language so that this large group of software 
developers can easily develop Caffe models that 
both the C++ Caffe and C# MyCaffe 
communities benefit from.  MyCaffe also allows 
Windows developers to expand MyCaffe with 
their own new layers using the C# language. 

C++ Caffe and C# MyCaffe Comparison Table 
 C++ Caffe C# MyCaffe 
All vision layers x x 
All recurrent layers x x 
All neuron layers x x 
All cuDnn layers x x 
All common layers x x 
All loss layers x x 
All data layers x All but 2 
All auto tests x x 
All solvers x x 
All fillers x x 
Net object x x 
Blob object x x 
SyncMem object x x 
DataTransform 
object 

x x 

Parallel object(s) x x 
NCCL (Nickel) x x 
Caffe object x CaffeControl 
Database Levledb, 

Imdb 
MSSQL 
(+Express) 

Low-level Cuda C++ C++ 
ProtoTxt Text  Compatible  
Weights Binary Compatible 
GPU Support 1-8 gpus 1-8 gpus* 
CPU Support x GPU only 

Table 1 Support Comparison 

* Multi-GPU support only on headless GPUs. 

mailto:daveb@signalpop.com
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From Table 1 (above) you can see that MyCaffe 
is a very close match to the C++ Caffe, with the 
main differences being in the database support 
and the way that MyCaffe accesses the low-level 
C++ CUDA code.  In addition, MyCaffe is 
designed to only run on GPU bases systems and 
supports a wide range of NVIDIA cards from the 
NVIDIA GeForce 750ti on up to multi-GPU 
Tesla based systems running in TCC mode.   

Like the C++ Caffe, MyCaffe can be 
complied to run using either a ‘float’ or ‘double’ 
as its base type. 

MyCaffe General Architecture 
 Four main modules make up the 
MyCaffe software: MyCaffe Control, MyCaffe 
Image Database, Cuda Control and the low-level 
Cuda C++ Code DLL. 

 

MyCaffeControl
MyCaffe
Image

Database
(C# in-memory 

db)

MS SQL
Express

(All C#)
SyncMem, Blob, 

Layers, Net, 
Solvers, Parallel

Cuda

Low-Level
CudaDnnDLL

(C++ DLL)

CudaControl
(C++)

COM

CUDA/cuDnn/cuBlas/
NCCL

 

Table 2 MyCaffe Architecture 

 The MyCaffe Control is the main 
interface to software that uses MyCaffe. It mainly 
plays the role of the ‘caffe’ object in C++ Caffe 
but does so in a way more convenient for C# 
Windows programmers for the control is easily 
dropped into a windows program and used. 

 The MyCaffe Image Database is an in-
memory database used to load datasets, or 
portions of datasets, from a Microsoft SQL, or 
Microsoft SQL Express database into memory.  
In addition to providing the typical database 
functionality, the MyCaffe Image Database adds 
several useful features to deep learning, namely: 
label balancing [3] and image boosting [4].  When 
using label balancing the up-sampling occurs at 
the database. The database itself organizes all 
data by label when loaded, thus allowing a 
random selection of the label group first, and then 
a random selection of the image from the label 
group, so as to ensure that labels are equally 
represented when training and not skew training 
toward one label or another.  Image boosting 
allows the user to mark specific images with a 
higher boost value to increase the probability that 
the marked image is selected during training. 
These are optional features that we have found 
helpful when training on sparse datasets that tend 
to have imbalanced label sets. 

 The Cuda Control is a C++ COM Control 
that supports COM/OLE Automation 
communication.  Using the COM support built 
into C#, the MyCaffe Control communicates to 
the Cuda Control seamlessly by passing 
parameters and a function index, which is then 
used internally to call the appropriate CUDA 
based function within the Low-Level CudaDnn 
DLL.  All parameters are converted from the 
COM/OLE Automation format and into native C 
types within the Cuda Control thus allowing the 
Low-Level CUDA C++ Code to focus on the 
low-level programming such as calling CUDA 
kernels and/or calling cuDnn and NCCL 
functions. 

 The Low-Level CudaDnn DLL (different 
from, but uses the cuDnn [5] library from 
NVIDIA) contains all of the low-level 
functionality such as the low level MyCaffe math 
functions, calls to cuDnn, calls to NCCL and 
several low level t-SNE [6] and PCA [7] 
functions provided for speed.  In order to manage 
the CUDA memory, CUDA Streams and special 
object pointers, such as the Tensor Descriptors 
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used by cuDnn, the CudaDnn DLL uses a set of 
look-up tables and keeps track of each and every 
memory allocation and special pointer allocated.  
A look-up index into each table acts as a handle 
that is then passed back on up to, and used by, the 
C# code within the MyCaffe Control.  Thanks to 
the way GPU’s operate with a (mainly) separate 
memory space from the CPU, a look-up table 
works well for once the memory is loaded on the 
GPU, you generally want to keep it there for as 
long as possible so as to avoid the timing hit 
caused by transferring between the GPU and host 
memory. 

Long h = Allocate Memory (h = 1)

GPU

MyCaffe Control (C#)

memory

Cuda C++ Code

time

Use Memory( h = 1 )

Lookup Table

[1] 0x8462

0x8462

h = 1

 

Table 3 Fast Lookup Table 

MyCaffe also employs this same concept to 
manage all special data pointers used by the Cuda 
and cuDnn libraries, where each pointer to an 
allocated descriptor, or stream, is also placed in 
its own look-up table that is referenced using an 
index (or handle) up in the MyCaffe Control 
software.  To support some sub-systems, such as 
NCCL, t-SNE and PCA, internal objects are 
allocated to manage the sub-system and stored in 
a look-up table thus allowing the CudaDnn DLL 
to manage the state of these subsystems while 
they are being used. 

                                                            
1 The SignalPop AI Designer version 0.9.2.188 using the 
LOAD_FROM_SERVICE mode was used for all tests. 
2 Run on GPU with monitor plugged in. 

Benchmarks 
In deep learning, speed is important.  

For that reason, we have run the MyCaffe on 
several Windows configurations to show how 
well the technology stacks up1. 

The following benchmarks were run on 
an i7-6950 10-core 3.00GHZ Dell/Alienware 
Area-51 R2 Computer running Windows 10 Pro 
with 64GB of memory loaded with an NVIDIA 
Titan Xp (Pascal) GPU running in TCC2 mode 
using CUDA 9.2.148/cuDNN 7.2.1 (9/12/2018). 

Model GPU 
Memory 
Used 

Image 
Size 

Batch  
Size 

Fwd/Bwd 
Average 
Time 
(ms.) 

GoogleNet  n/a 227x227 1283 est 610 ms 
GoogleNet  7.76 GB 227x227 64 305 ms 
GoogleNet  4.55 GB 227x227 32 160 ms 
GoogleNet  2.92 GB 227x227 16 75 ms 
VGG-16  7.91 GB 227x227 32 350 ms 
VGG-16  5.71 GB 227x227 16 196 ms 
GoogleNet 3.29 GB 56x56 24 67 ms 
AlexNet  1.02 GB 32x32 128 45 ms 

 
Comparison benchmarks (run in 2014) show that 
C++ Caffe using an older version of cuDnn 
running GoogleNet on an NVIDIA K40c with a 
128 batch size had a running total time of 1688.8 
ms. for the forward + backward pass [8].  

But how does MyCaffe stack up on lower-end 
GPU’s such as the 1060 typically found in laptops 
or the $170 NVIDIA 1050ti?  The following 
benchmarks show what these more standard PC 
systems can do, as well. 

The following benchmarks were run on an i7 
6700HQ 6-core 2.60GHZ Alienware 15 Laptop 
running Windows 10 with 8 GB of memory 
loaded with an NVIDIA GTX 1060 GPU in 
WDM4 mode with CUDA 9.2.148/cuDNN 7.2.1. 

Model GPU 
Memory 
Used 

Image 
Size 

Batch  
Size 

Fwd/Bwd 
Average 
Time 
(ms.) 

GoogleNet 4.20 GB 56x56 24 180 ms 
AlexNet  1.61 GB 32x32 128  77 ms 

 

3 Estimated by multiplying batch 64 timing x2. 
4 Run on GPU with monitor connected. 
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The following benchmarks were run on an Intel-
Celeron 2.90GHZ system running Windows 10 
Pro with 12 GB of memory loaded with an 
NVIDIA 1050 GPU running in WDM5 mode 
with CUDA 9.2.148/cuDNN 7.2.1. 

Model GPU 
Memory 
Used 

Image 
Size 

Batch  
Size 

Fwd/Bwd 
Average 
Time 
(ms.) 

GoogleNet 3.84 GB 56x56 24 285 ms 
AlexNet  1.46 GB 32x32 128 125 ms 

 

Compatibility 
 Since our goal is to expand the target 
market for the C++ Caffe platform to the general 
C# Windows programmer, we have strived to 
make sure that MyCaffe maintains compatibility 
with the C++ Caffe platform prototxt scripts and 
binary weight file formats.  To do this, MyCaffe 
performs its own parsing of the prototxt files into 
internal C# parameter objects that closely match 
those generated by Googles ProtoTxt software. In 
addition each parameter object is designed to 
print itself out in the very same ProtoTxt format 
from which it was parsed.  Using this 
methodology allows MyCaffe to maintain 
compatibility with the same prototxt files used by 
the C++ Caffe. 

 With regard to the weigh files, MyCaffe 
stores weight files using the same Google 
ProtoBuf binary format as the C++ Caffe 
allowing MyCaffe to use existing .caffemodel 
files created using the C++ Caffe. 

Reinforcement Learning Support 
 MyCaffe recently added support for 
policy gradient reinforcement learning [9] which 
runs on a Cart-Pole written in C# inspired by the 
version by OpenAI [10] and originally created by 
Sutton et al. [11] [12].  A new component called 
the MyCaffeTrainerRL provides the basic 
architecture for training a MyCaffe component 
using the reinforcement learning style of training.  

                                                            
5 Run on GPU with monitor connected. 

MyCaffeTrainer
RL

Control

(overrides training 
and testing 

functionality)

MyCaffeControl

(All C#)
SyncMem, Blob, 

Layers, Net, 
Solvers, Parallel

Cuda

 

Figure 1 MyCaffeTrainerRL uses MyCaffe 

When using the MyCaffeTrainerRL, the same 
MyCaffe solver, network and model are used, but 
trained with a reinforcement learning method of 
training.  The main requirements are that the 
model use the MemoryData layer for data input, 
and the MemoryLoss layer to calculate the loss 
and gradients.  For example the Sigmoid based 
model below uses both where the Sigmoid layer 
produces a probability used to determine one of 
two actions to take. 

MemoryData

InnerProduct ReLU

InnerProduct

Sigmoid MemoryLoss

state

Aprob

Bottom.diff

 

Figure 2 Policy Gradient Reinforcement Learning Model 
with Sigmoid 

Alternatively, a Softmax based model may be 
used as well when more than two actions are 
needed. 
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MemoryData

InnerProduct ReLU

InnerProduct

Softmax MemoryLoss

state

probabilities

Bottom.diff

 

Figure 3 Policy Gradient Reinforcement Learning Model 
with Softmax 

When training either model, the type of model is 
detected by the MyCaffeTrainerRL which hooks 
into the loss functionality of the MemoryLoss 
layer and takes care of calculating the losses and 
setting the gradients on the Bottom.diff of the 
layer attached to the Memory Loss layer.  The 
back-propagation then propagates the Bottom.diff 
on up the network, from bottom to top, as it does 
with any other model. 

For more details on how this works, see Appendix 
A (Sigmoid) or Appendix B (Softmax). 

Summary 
 It is great to see fantastic software such 
as Caffe out in the open source community.  As a 
thank you, we wanted to contribute back to that 
same community with the ‘MyCaffe’ project to 
help an even larger group of programmers use 
this great technology.  And now with the 
MyCaffeTrainerRL, it is even easier to create 
reinforcement learning solutions with MyCaffe. 

 For more information on the C++ Caffe, 
see the Berkeley AI Research site at 
http://caffe.berkeleyvision.org/. 

 For more information on the Windows 
version of MyCaffe written in C#, see us on 
GitHub at https://github.com/mycaffe.  For easy 
integration into your existing C# applications, 
just search for MyCaffe on NuGet or go to 
https://www.nuget.org/packages?q=MyCaffe.   

And for more information on innovative products 
that make designing, editing, training, testing and 
debugging your AI models easier, see us at 
https://www.signalpop.com.  

 

  

http://caffe.berkeleyvision.org/
https://github.com/mycaffe
https://www.nuget.org/packages?q=MyCaffe
https://www.signalpop.com/
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Appendix A – Sigmoid based Reinforcement Learning with MyCaffe 
 

The new MyCaffeTrainerRL extends MyCaffe 
by adding the ability to easily train policy 
gradients with reinforcement learning.  When 
using the MyCaffeTrainerRL with two actions, 
the following model architecture is used. 

MemoryData

InnerProduct ReLU

InnerProduct

Sigmoid MemoryLoss

state

Aprob

Bottom.diff

 
Figure 4 Sigmoid based Policy Gradient Reinforcement Loss 
Model 

Each model used with the MyCaffeTrainerRL, is 
required to use both the MemoryData layer for 
input, and the MemoryLoss layer to calculate the 
gradients – the MyCaffeTrainerRL actually takes 
care of adding the input to the MemoryData layer 
and automatically calculates the loss and 
gradients by hooking into the MemoryLoss layer.   

The gradients are then fed back up through the 
Bottom.diff of the layer feeding into the 
MemoryLoss layer, which in this case is the 
bottom InnerProduct layer.   

The main limitation of a Sigmoid based model is 
that it only supports two actions.  For more than 
two actions, you will want to use a Softmax based 
model.  The Sigmoid model is faster than the 
Softmax model, so if you only have two actions, 
it is recommended – see Appendix B (below) to 
see how the Softmax based model works.

 

Detailed Walk Through 
The diagram below shows how each step of the MyCaffeTrainerRL works to provide the reinforcement 
learning with a Sigmoid based model.  During this process, the following steps take place: 

0.) At the start, the Environment (such as Cart-Pole) is reset, which returns our initial state – state0. 
1.) The state0 is fed through the network (and its Model) in a forward pass…  
2.) …to produce the probability used to determine the action - the probability produced is called Aprob. 
3.) The action is set as follows: action = (random < Aprob) ? 0 : 1, which sets the action to zero if the 

random number is less than Aprob and to 1 otherwise. 
4.) The action is then fed to the Environment, which is directed to run the action in the next Step of 

the simulation. 
5.) The new Step produces a new state, state1 and a reward for taking the action (in the case of Cart-

Pole, after taking the action, the reward is set to 0 if the cart runs off the track or the pole angle 
exceeds 20 degrees, and to 1 if the pole is still balancing).  The previous state (state0), the action 
taken, the Aprob used to calculate the action and the reward for running the action are all stored in 
a Memory that collectively contains a full ‘experience’ once the simulation completes the round. 

6.) If the simulation is not complete, the state0 is set to state1 and we continue back up to step 1 above. 
7.) Once the simulation is complete (e.g. the Environment at step 4 returns done = true) the episode is 

processed by training the network on it. 
8.) At the start of training, the initial gradient is calculated as follows: Dlogps = (action==0) ? 1-Aprob 

: 0 – Aprob, which will help move the weights toward what the action should be [13] [14] (for more 
on this see Sigmoid Gradient Calculation below). 
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9.) Next, we calculate the discounted rewards, which are discounted backwards in time so as to give 
older steps higher weighting than newer steps, which helps encourage larger and larger episodes. 

10.) The discounted rewards are multiplied by the policy gradients (Dlogps) to produce a set of 
modulated gradients. 

11.) The modulated gradients are set as the Bottom.diff in the layer connected to the MemoryLoss layer 
(which in this case is the bottom InnerProduct layer), and then the backward pass back propagates 
the diff on up through the network.  NOTE: the gradients of the network are accumulated until we 
hit a batch_size number of episodes, at which time the gradients are applied to the weights. 

12.) The Environment is reset to start a new simulation and we continue back up to step 1 to repeat the 
process. 

Training

On batch_size = 10 episodes, 
Apply gradients (diff -> data)

ep
iso

de

Environment

Modelstate0 Aprob action(Rand < Aprob ? 0 : 1)

Environment
state1, reward, done

Memory

state0 action Aprob reward

: : : :

Step 0

Step 1

Step n-1

Dlogps  

: :

      

Action=0 ? 
1 - Aprob : 0 - Aprob

Discounted 
Rewards

Policy Gradients Discounted 
RewardsX

Bottom.diff
(gradients)

Model
Gradients accumulated

Backward pass

Forward pass

when done

2

4

5

7

8

9

10

11

0

1

Environmentstate0

state0 = state1

Reset

Reset

Step

6

3

11

12

 

Figure 5 Reinforcement Learning Process with Sigmoid 

Sigmoid Gradient Calculation 
The key to the Sigmoid based policy gradient reinforcement learning is in the calculation of the gradients 
applied to the Bottom.diff.  There are three formulas that perform this task: 

action = (random < Aprob) ? 0 : 1 

Dlogps = (action==0) ? 1-Aprob : 0 – Aprob // determine the gradient 

Bottom.diff = Dlogps * discounted rewards // modulate the gradient 
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How does this actually work?  The following table shows what happens to the data in four examples (rows) 
as the data moves through the network. 

 

Figure 6 Sigmoid Gradient Calculation 

Staring with column 1, let’s trace through what actually happens to the data in the network, after which, 
you will hopefully better understand how the three functions above actually work to move the weights 
toward values that calculate the results we want. 

At column 1, we first calculate Aprob by running the state through a network forward pass which is shown 
in steps 1 & 2 above. 

Next, at column 2, the action is calculated using action = (random < Aprob) ? 0 : 1, also shown in step 3 
above. 

At column 3, the initial gradient Dlogps is calculated with Dlogps = (action==0) ? 1-Aprob : 0 – Aprob, also 
shown in step 8 above.   

At column 4, we multiply -1 by Dlogps to compensate for the fact that MyCaffe (and Caffe) subtract the 
gradients (Bottom.diff) from the weights. 

At column 5 in our example, let’s assume that the weight value is set to 1.0. 

The new weight in column 6 is calculated with new weight = old weight – diff, and this actually occurs 
during the Solver ApplyUpdate shown in step 11 above. 

To see what impact the weight update actually had, let’s assume that our input data in column 7 is the same 
Aprob that we previously had as output, for we are trying to drive our weights to values that eventually 
produce the ground truths shown in rows 1 and 4. 

Comparing the new result in column 9, produced with new result = data * new weight with the old result 
in column 8, we can see that our new result values are indeed moving closer to our ground truths.  In row 
2, our old result of 0.1 moves to 0.09 – a little closer to the ground truth Aprob value of 0 (which would 
always produce an action of 1), and in Row 3, our old result of 0.9 moves to 0.99 – a little closer to the 
ground truth Aprob value of 1 (which would always produce an action of 0). 

As shown above, the Dlogps does indeed move our weights in the direction that also moves the final result 
toward our ground truth values. 

  

col. 1 col. 2 col. 3 col. 4 col. 5 col. 6 col. 7 col. 8 col. 9

(random<ap)?0:1 (a=0)?1-ap:0-ap old new old new
Aprob (ap) Action (a) Dlogps diff weight weight data result result

row 1 0 1 0 0 1 1 0 0 0
row 2 0.1 1 -0.1 0.1 1 0.9 0.1 0.1 0.09 decreased toward 0
row 3 0.9 0 0.1 -0.1 1 1.1 0.9 0.9 0.99 increased toward 1
row 4 1 0 0 0 1 1 1 1 1

result = weight * data
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Appendix B – Softmax based Reinforcement Learning with MyCaffe 
 

The MyCaffeTrainerRL that extends MyCaffe, 
by adding the ability to easily train policy 
gradients with reinforcement learning, also 
supports Softmax based models.  When using the 
MyCaffeTrainerRL with more than two actions, 
the following general model architecture is used. 

MemoryData

InnerProduct ReLU

InnerProduct

Softmax MemoryLoss

state

probabilities

Bottom.diff

 
Figure 7 Softmax based Policy Gradient Reinforcement Loss 
Model 

Just like the Sigmoid model, Softmax models are 
also required to use both the MemoryData layer 
for input, and the MemoryLoss layer to calculate 
the gradients – the MyCaffeTrainerRL actually 
takes care of adding the input to the MemoryData 
layer and automatically calculates the loss and 
gradients by hooking into the MemoryLoss layer.   

With the Softmax model, the MyCaffeTrainerRL 
internally uses a SoftmaxCrossEntropyLoss layer 
to calculate the initial gradients that are then fed 
back up through the Bottom.diff of the layer 
feeding into the MemoryLoss layer, which in this 
case is the bottom InnerProduct layer.   

Although slightly slower than the Sigmoid based 
model, Softmax based models easily support 
more than two actions, which is required to solve 
certain problems.

Detailed Walk Through 
The diagram below shows how each step of the MyCaffeTrainerRL works to provide the reinforcement 
learning with a Softmax based model.  During this process, the following steps take place: 

0.) At the start, the Environment (such as Cart-Pole) is reset, which returns our initial state – state0. 
1.) The state0 is fed through the network (and its Model) in a forward pass…  
2.) …to produce a set of probabilities (one per action) used to determine the action – these our outputs 

of the Softmax layer. 
3.) The probabilities returned by the Softmax layer are treated as a probability distribution used to 

determine the actual action.   
4.) The action is then fed to the Environment, which is directed to run the action in the next Step of 

the simulation. 
5.) The new Step produces a new state, state1 and a reward for taking the action (in the case of Cart-

Pole, after taking the action, the reward is set to 0 if the cart runs off the track or the pole angle 
exceeds 20 degrees, and to 1 if the pole is still balancing).  The previous state (state0), the action 
taken and the reward for running the action are all stored in a Memory that collectively contains a 
full ‘experience’ once the simulation completes the round. 

6.) If the simulation is not complete, the state0 is set to state1 and we continue back up to step 1 above. 
7.) Once the simulation is complete (e.g. the Environment at step 4 returns done = true) the episode is 

processed by training the network on it. 
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8.) At the start of training, the initial gradient is calculated using an internal SoftmaxCrossEntropyLoss 
layer which produces the initial gradients that help move the weights toward what the action should 
be [13] [14] (for more on this see Softmax Gradient Calculation below). 

9.) Next, we calculate the discounted rewards, which are discounted backwards in time so as to give 
older steps higher weighting than newer steps, which helps encourage larger and larger episodes. 

10.) The discounted rewards are multiplied by the policy gradients (SoftmaxCrossEntropyLoss 
gradients) to produce a set of modulated gradients. 

11.) The modulated gradients are set as the Bottom.diff in the layer connected to the MemoryLoss layer 
(which in this case is the bottom InnerProduct layer), and then the backward pass back propagates 
the diff on up through the network.  NOTE: the gradients of the network are accumulated until we 
hit a batch_size number of episodes, at which time the gradients are applied to the weights. 

12.) The Environment is reset to start a new simulation and we continue back up to step 1 to repeat the 
process. 

Training

On batch_size = 10 episodes, 
Apply gradients (diff -> data)

ep
iso

de

Environment

Modelstate0 probabilities action

(select action from 
probability distribution)

Environment
state1, reward, done

Memory

state0 action reward

: : :

Step 0

Step 1

Step n-1

CE gradient  

: :

     

SoftmaxCrossEntropy
Loss

Discounted 
Rewards

Policy Gradients Discounted 
RewardsX

Bottom.diff
(gradients)

Model
Gradients accumulated

Backward pass

Forward pass

when done

2

4

5

7

8

9

10

11

0

1

Environmentstate0

state0 = state1

Reset

Reset

Step

6

3

11

12

 

Figure 8 Reinforcement Learning Process with Softmax 

Note, the training process of both the Softmax based and Sigmoid based models are basically the same 
except in how the gradients are calculated.  The Softmax uses the SoftmaxCrossEntropyLoss to calculate 
the initial gradients, whereas the Sigmoid calculates the initial gradients directly (e.g. Dlogps).  
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Softmax Gradient Calculation 
The key to the Softmax based policy gradient reinforcement learning is in the calculation of the gradients 
applied to the Bottom.diff.  There are three formulas that perform this task: 

softmax = calculated from action logits. 

Dlogps = softmax - target                                           // determine the gradient 

Bottom.diff = Dlogps * discounted rewards // modulate the gradient 

How does this actually work?  The following table shows what happens to the data in four examples (rows) 
as the data moves through the network. 

 

Figure 9 Softmax Gradient Calculation 

Staring with column 1, let’s trace through what actually happens to the data in the network, after which, 
you will hopefully better understand how the three functions above actually work to move the weights 
toward values that calculate the results we want. 

At column 1, we first calculate probabilities by running the state through a network forward pass which is 
shown in steps 1 & 2 above – the probabilities are the outputs of the Softmax layer. 

Next, at column 2, the action is calculated by treating the probabilities as a probability distribution and 
selecting the action from the distribution via randomly generated number, also shown in step 3 above. 

At column 3, the initial gradients for both action 0 and action 1 are calculated using the internal 
SoftmaxCrossEntropyLoss layer, which essentially subtracts the target from the Softmax output.   

At column 4, we directly set the Bottom.diff to the gradients calculated in column 3. 

At column 5 in our example, let’s assume that the weight value is set to 1.0. 

The new weight in column 6 is calculated with new weight = old weight – diff, and this actually occurs 
during the Solver ApplyUpdate shown in step 11 above. 

To see what impact the weight update actually had, let’s assume that our input data in column 7 is the same 
as the probabilities that we previously had as the Softmax output, for we are trying to drive our weights to 
values that eventually produce the ground truths shown in rows 1 and 4. 

Comparing the new result in columns 10 and 11, produced with new result = data * new weight with the 
old results in column 8 and 9, we can see that our new result values are indeed moving closer to our ground 
truths.  In row 2, column 8, our old result of 0.1 moves to 0.09 – a little closer to the ground truth probability 
value of 0 (which would always produce an action of 1), and in row 3, column 8, our old result of 0.9 
moves to 0.99 – a little closer to the ground truth probability value of 1 (which would always produce an 
action of 0). 

col. 1 col. 2 col. 3 col. 3 col. 4 col. 5 col. 6 col. 7 col. 8 col. 9 col. 10 col. 11

probabilities (from Softmax) targets softmax-target softmax-target old new old rew result new result
action 0 action 1 action 0 action 1 gradient 0 gradient 1 diff 0 diff 1 weight weight data result action 0 action 1

row 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1
row 2 0.1 0.9 0 1 0.1 -0.1 0.1 -0.1 1 1 0.9 1.1 0.1 0.9 0.1 0.9 0.09 0.99
row 3 0.9 0.1 1 0 -0.1 0.1 -0.1 0.1 1 1 1.1 0.9 0.9 0.1 0.9 0.1 0.99 0.09
row 4 1 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 0

decreases toward 0
increases toward 1
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As shown above, the SoftmaxCrossEntropyLoss layer does indeed move our weights in the direction that 
also moves the final result toward our ground truth values. 

To see an example of the MyCaffeTrainerRL working, check out the video of Cart-Pole balancing for over 
a minute at https://www.signalpop.com/examples.  And, if you would like to try out the MyCaffe 
reinforcement learning, just download the MyCaffe Nuget package for Visual Studio, or install the MyCaffe 
Test Application from GitHub.   

The policy gradient reinforcement learning trainer source code is available on GitHub.  

https://www.signalpop.com/examples
https://www.nuget.org/packages?q=MyCaffe
https://github.com/MyCaffe/MyCaffe/releases
https://github.com/MyCaffe/MyCaffe/releases
https://github.com/MyCaffe/MyCaffe/blob/master/MyCaffe.trainers/pg.mt/TrainerPG.cs
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