MyCaffe  0.11.2.9-beta1
Deep learning software for Windows C# programmers.
MyCaffe.layers.AccuracyLayer< T > Class Template Reference

The AccuracyLayer computes the classification accuracy for a one-of-many classification task. This layer is initialized with the MyCaffe.param.AccuracyParameter. More...

Inheritance diagram for MyCaffe.layers.AccuracyLayer< T >:
MyCaffe.layers.Layer< T >

Public Member Functions

 AccuracyLayer (CudaDnn< T > cuda, Log log, LayerParameter p)
 Constructor. More...
 
override void LayerSetUp (BlobCollection< T > colBottom, BlobCollection< T > colTop)
 Setup the layer. More...
 
override void Reshape (BlobCollection< T > colBottom, BlobCollection< T > colTop)
 Reshape the bottom (input) and top (output) blobs. More...
 
- Public Member Functions inherited from MyCaffe.layers.Layer< T >
 Layer (CudaDnn< T > cuda, Log log, LayerParameter p)
 The Layer constructor. More...
 
void Dispose ()
 Releases all GPU and host resources used by the Layer. More...
 
virtual bool ReInitializeParameters (WEIGHT_TARGET target)
 Re-initialize the parameters of the layer. More...
 
void SetPhase (Phase phase)
 Changes the layer's Phase to the one specified. More...
 
void Setup (BlobCollection< T > colBottom, BlobCollection< T > colTop)
 Implements common Layer setup functionality. More...
 
virtual void SetNetParameterUsed (NetParameter np)
 This function allows other layers to gather needed information from the NetParameters if any, and is called when initialzing the Net. More...
 
void ConvertToBase (BlobCollection< T > col)
 ConvertToBase converts any blobs in a collection that are in half size to the base size. More...
 
double Forward (BlobCollection< T > colBottom, BlobCollection< T > colTop)
 Given the bottom (input) Blobs, this function computes the top (output) Blobs and the loss. More...
 
void Backward (BlobCollection< T > colTop, List< bool > rgbPropagateDown, BlobCollection< T > colBottom)
 Given the top Blob error gradients, compute the bottom Blob error gradients. More...
 
double loss (int nTopIdx)
 Returns the scalar loss associated with the top Blob at a given index. More...
 
void set_loss (int nTopIdx, double dfLoss)
 Sets the loss associated with a top Blob at a given index. More...
 
virtual bool AllowForceBackward (int nBottomIdx)
 Return whether to allow More...
 
bool param_propagate_down (int nParamIdx)
 Returns whether or not the Layer should compute gradients w.r.t. a parameter at a particular index given by a parameter index. More...
 
void set_param_propagate_down (int nParamIdx, bool bPropagate)
 Sets whether or not the Layer should compute gradients w.r.t. a parameter at a particular index given by a parameter index. More...
 
void SetEnablePassthrough (bool bEnable)
 Enables/disables the pass-through mode. More...
 

Protected Member Functions

override void dispose ()
 Releases all GPU and host resources used by the Layer. More...
 
override void forward (BlobCollection< T > colBottom, BlobCollection< T > colTop)
 Forward compuation. More...
 
void forward_gpu (BlobCollection< T > colBottom, BlobCollection< T > colTop)
 Forward compuation. More...
 
void forward_cpu (BlobCollection< T > colBottom, BlobCollection< T > colTop)
 Forward compuation. More...
 
void forward_cpu_direct (BlobCollection< T > colBottom, BlobCollection< T > colTop)
 Forward compuation. More...
 
override void backward (BlobCollection< T > colTop, List< bool > rgbPropagateDown, BlobCollection< T > colBottom)
 Not implemented – AccuracyLayer cannot be used as a loss.
 
- Protected Member Functions inherited from MyCaffe.layers.Layer< T >
GetIterationArgs getCurrentIteration ()
 Fires the OnGetIteration event to query the current iteration. More...
 
long convert_to_full (int nCount, long hMem)
 Convert half memory to full memory. More...
 
void convert (BlobCollection< T > col)
 Convert a collection of blobs from / to half size. More...
 
bool reshapeNeeded (BlobCollection< T > colBottom, BlobCollection< T > colTop, bool bReset=true)
 Tests the shapes of both the bottom and top blobs and if they are the same as the previous sizing, returns false indicating that no reshape is needed. More...
 
bool compareShapes (BlobCollection< T > colBottom, BlobCollection< T > colTop)
 Compare the shapes of the top and bottom and if the same, return true, otherwise false. More...
 
void CheckBlobCounts (BlobCollection< T > colBottom, BlobCollection< T > colTop)
 Called by the Layer::Setup function to check the number of bottom (input) and top (output) Blobs provided match the expected number of blobs expected via the {EactNum,Min,Max}{Bottom,Top}Blobs functions. More...
 
void SetLossWeights (BlobCollection< T > colTop)
 Called by Layer::Setup to initialize the weights associated with any top (output) Blobs in the loss function ans store non-zero loss weights in the diff Blob. More...
 
bool shareParameter (Blob< T > b, List< int > rgMinShape)
 Attempts to share a parameter Blob if another parameter Blob with the same name and accpetable size is found. More...
 
bool shareLayerBlob (Blob< T > b, List< int > rgMinShape)
 Attempts to share a Layer Blob if another parameter Blob with the same name and acceptable size is found. More...
 
bool shareLayerBlobs (Layer< T > layer)
 Attempts to share the Layer blobs and internal_blobs with matching names and sizes with those in another matching layer. More...
 
virtual WorkspaceArgs getWorkspace ()
 Returns the WorkspaceArgs used to share a workspace between Layers. More...
 
virtual bool setWorkspace (ulong lSize)
 Sets the workspace size (in items) and returns true if set, false otherwise. More...
 
void check_nan (Blob< T > b)
 Checks a Blob for NaNs and throws an exception if found. More...
 
convert (double df)
 Converts a double to a generic. More...
 
double convertD (T df)
 Converts a generic to a double value. More...
 
float convertF (T df)
 Converts a generic to a float value. More...
 
double [] convertD (T[] rg)
 Converts an array of generic values into an array of double values. More...
 
T [] convert (double[] rg)
 Converts an array of double values into an array of generic values. More...
 
float [] convertF (T[] rg)
 Converts an array of float values into an array of generic values. More...
 
T [] convert (float[] rg)
 Converts an array of float values into an array of generic values. More...
 
int val_at (T[] rg, int nIdx)
 Returns the integer value at a given index in a generic array. More...
 
Size size_at (Blob< T > b)
 Returns the Size of a given two element Blob, such as one that stores Blob size information. More...
 

Properties

override int ExactNumBottomBlobs [get]
 Returns the number of bottom blobs used: predicted, label More...
 
override int MinTopBlobs [get]
 Returns the minimum number of top blobs: accuracy More...
 
override int MaxTopBlobs [get]
 Returns the maximum number of top blobs: accuracy, labels More...
 
- Properties inherited from MyCaffe.layers.Layer< T >
BlobCollection< T > blobs [get]
 Returns the collection of learnable parameter Blobs for the Layer. More...
 
virtual BlobCollection< T > internal_blobs [get]
 Returns the collection of internal Blobs used by the Layer. More...
 
LayerParameter layer_param [get]
 Returns the LayerParameter for this Layer. More...
 
LayerParameter.LayerType type [get]
 Returns the LayerType of this Layer. More...
 
virtual int ExactNumBottomBlobs [get]
 Returns the exact number of bottom (input) Blobs required by the Layer, or -1 if no exact number is required. More...
 
virtual int MinBottomBlobs [get]
 Returns the minimum number of bottom (input) Blobs required by the Layer, or -1 if no minimum number is required. More...
 
virtual int MaxBottomBlobs [get]
 Returns the maximum number of bottom (input) Blobs required by the Layer, or -1 if no maximum number is required. More...
 
virtual int ExactNumTopBlobs [get]
 Returns the exact number of top (output) Blobs required by the Layer, or -1 if no exact number is required. More...
 
virtual int MinTopBlobs [get]
 Returns the minimum number of top (output) Blobs required by the Layer, or -1 if no minimum number is required. More...
 
virtual int MaxTopBlobs [get]
 Returns the maximum number of top (output) Blobs required by the Layer, or -1 if no maximum number is required. More...
 
virtual bool EqualNumBottomTopBlobs [get]
 Returns true if the Layer requires and equal number of bottom (input) and top (output) Blobs. More...
 
virtual bool AutoTopBlobs [get]
 Return whether "anonymous" top (output) Blobs are created automatically by the Layer. More...
 
double forward_timing [get]
 Returns the timing of the last forward pass in milliseconds. More...
 
double forward_timing_average [get]
 Returns the average timing of the forward passes in milliseconds. More...
 
double backward_timing [get]
 Returns the timing of the last backward pass in milliseconds. More...
 
double backward_timing_average [get]
 Returns the average timing of the backward passes in milliseconds. More...
 

Additional Inherited Members

- Static Public Member Functions inherited from MyCaffe.layers.Layer< T >
static Layer< T > Create (CudaDnn< T > cuda, Log log, LayerParameter p, CancelEvent evtCancel, IXImageDatabaseBase imgDb=null, TransferInput trxinput=null)
 Create a new Layer based on the LayerParameter. More...
 
- Protected Attributes inherited from MyCaffe.layers.Layer< T >
LayerParameter.LayerType m_type = LayerParameter.LayerType._MAX
 Specifies the Layer type. More...
 
CudaDnn< T > m_cuda
 Specifies the CudaDnn connection to Cuda. More...
 
Log m_log
 Specifies the Log for output. More...
 
LayerParameter m_param
 Specifies the LayerParameter describing the Layer. More...
 
Phase m_phase
 Specifies the Phase under which the Layer is run. More...
 
BlobCollection< T > m_colBlobs
 Specifies the learnable parameter Blobs of the Layer. More...
 
DictionaryMap< bool > m_rgbParamPropagateDown
 Specifies whether or not to compute the learnable diff of each parameter Blob. More...
 
DictionaryMap< double > m_rgLoss
 Specifies the loss values that indeicate whether each top (output) Blob has a non-zero weight in the objective function.. More...
 
m_tOne
 Specifies a generic type equal to 1.0. More...
 
m_tZero
 Specifies a generic type equal to 0.0. More...
 
bool m_bEnablePassthrough = false
 Enables/disables the pass-through mode for the layer. Default = false. More...
 
bool m_bUseHalfSize = false
 Specifies that the half size of the top (if any) should be converted to the base size. More...
 
bool m_bConvertTopOnFwd = false
 Specifies whether or not the layer should convert the top on the forward pass when using half sized memory (typically only done with input data). More...
 
bool m_bConvertTopOnBwd = true
 Specifies whether or not to convert the top on the backward pass when using half sized memory (typically not done on loss layers). More...
 
bool m_bConvertBottom = true
 Specifies whether or not the layer should convert the bottom when using half sized memory. More...
 
bool m_bReshapeOnForwardNeeded = true
 Specifies whether or not the reshape on forward is needed or not. More...
 
- Events inherited from MyCaffe.layers.Layer< T >
EventHandler< WorkspaceArgsOnGetWorkspace
 Specifies the OnGetWorkspace event that fires when the getWorkspace() function is called by a layer to get a shareable workspace to conserve GPU memory. More...
 
EventHandler< WorkspaceArgsOnSetWorkspace
 Specifies the OnSetWorkspace event that fires when the setWorkspace() function is called by a layer to get a shareable workspace to conserve GPU memory. More...
 
EventHandler< GetIterationArgsOnGetIteration
 Specifies the OnGetIteration event that fires when a layer needs to get the current iteration from the solver. More...
 
EventHandler< GetWorkBlobArgs< T > > OnDebug
 Specifies the OnGetWorkBlob event that is only supported when debugging to get a work blob from the primary Net holding this layer. More...
 

Detailed Description

The AccuracyLayer computes the classification accuracy for a one-of-many classification task. This layer is initialized with the MyCaffe.param.AccuracyParameter.

See also
Convolutional Architecture Exploration for Action Recognition and Image Classification by J. T. Turner, David Aha, Leslie Smith, and Kalyan Moy Gupta, 2015.
Template Parameters
TSpecifies the base type float or double. Using float is recommended to conserve GPU memory.

Definition at line 20 of file AccuracyLayer.cs.

Constructor & Destructor Documentation

◆ AccuracyLayer()

Constructor.

Parameters
cudaCuda engine.
logGeneral log.
pprovides AccuracyParameter accuracy_param, with AccuracyLayer options:
  • top_k (optional, default 1) Sets the maximumrank k at which prediction is considered correct, For example, if k = 5, a prediction is counted correct if the correct label is among the top 5 predicted labels.

Definition at line 41 of file AccuracyLayer.cs.

Member Function Documentation

◆ dispose()

override void MyCaffe.layers.AccuracyLayer< T >.dispose ( )
protectedvirtual

Releases all GPU and host resources used by the Layer.

Reimplemented from MyCaffe.layers.Layer< T >.

Definition at line 49 of file AccuracyLayer.cs.

◆ forward()

override void MyCaffe.layers.AccuracyLayer< T >.forward ( BlobCollection< T >  colBottom,
BlobCollection< T >  colTop 
)
protectedvirtual

Forward compuation.

Parameters
colBottombottom input blob (length 2)
  1. $ (N \times C \times H \times W) $ the predictions $ x $, a blob with values in $ [-\infty, +\infty] $ indicating the predicted score of each of the $ K = CHW $ classes. Each $ x_n $ is mapped to a predicted label $ \hat{l}_n $ given by its maximal index: $ \hat{l}_n = \arg\max\limits_k x_{nk} $
  2. $ (N \times 1 \times 1 \times 1) $ the labels l, an integer-valued blob with values $ l_n \in [0, 1, 2, ..., K-1] $ indicating the correct class label among the $ K $ classes.
colToptop output blob vector (length 1)
  1. $ (1 \times 1 \times 1 \times 1) $ the computed accuracy: $ \frac{1}{N} \sum\limits_{n=1}^N \delta\{ \hat{l}_n = l_n \} $ where $ \delta\{\mathrm{condition}\} = \left\{ \begin{array}{lr} 1 \: \mbox{if condition} \\ 0 \: \mbox{otherwise} \end{array} \right. $

Implements MyCaffe.layers.Layer< T >.

Definition at line 156 of file AccuracyLayer.cs.

◆ forward_cpu()

void MyCaffe.layers.AccuracyLayer< T >.forward_cpu ( BlobCollection< T >  colBottom,
BlobCollection< T >  colTop 
)
protected

Forward compuation.

Parameters
colBottombottom input blob (length 2)
  1. $ (N \times C \times H \times W) $ the predictions $ x $, a blob with values in $ [-\infty, +\infty] $ indicating the predicted score of each of the $ K = CHW $ classes. Each $ x_n $ is mapped to a predicted label $ \hat{l}_n $ given by its maximal index: $ \hat{l}_n = \arg\max\limits_k x_{nk} $
  2. $ (N \times 1 \times 1 \times 1) $ the labels l, an integer-valued blob with values $ l_n \in [0, 1, 2, ..., K-1] $ indicating the correct class label among the $ K $ classes.
colToptop output blob vector (length 1)
  1. $ (1 \times 1 \times 1 \times 1) $ the computed accuracy: $ \frac{1}{N} \sum\limits_{n=1}^N \delta\{ \hat{l}_n = l_n \} $ where $ \delta\{\mathrm{condition}\} = \left\{ \begin{array}{lr} 1 \: \mbox{if condition} \\ 0 \: \mbox{otherwise} \end{array} \right. $

Definition at line 290 of file AccuracyLayer.cs.

◆ forward_cpu_direct()

void MyCaffe.layers.AccuracyLayer< T >.forward_cpu_direct ( BlobCollection< T >  colBottom,
BlobCollection< T >  colTop 
)
protected

Forward compuation.

Parameters
colBottombottom input blob (length 2)
  1. $ (N \times 1 \times 1 \times 1) $ the predictions $ x $, a blob with values in $ [0, max_label] $ indicating the predicted label value.
  2. $ (N \times 1 \times 1 \times 1) $ the labels l, an integer-valued blob with values $ l_n \in [0, 1, 2, ..., K-1] $ indicating the correct class label among the $ K $ classes.
colToptop output blob vector (length 1)
  1. $ (1 \times 1 \times 1 \times 1) $ the computed accuracy: $ \frac{1}{N} \sum\limits_{n=1}^N \delta\{ \hat{l}_n = l_n \} $ where $ \delta\{\mathrm{condition}\} = \left\{ \begin{array}{lr} 1 \: \mbox{if condition} \\ 0 \: \mbox{otherwise} \end{array} \right. $

Definition at line 404 of file AccuracyLayer.cs.

◆ forward_gpu()

void MyCaffe.layers.AccuracyLayer< T >.forward_gpu ( BlobCollection< T >  colBottom,
BlobCollection< T >  colTop 
)
protected

Forward compuation.

Parameters
colBottombottom input blob (length 2)
  1. $ (N \times C \times H \times W) $ the predictions $ x $, a blob with values in $ [-\infty, +\infty] $ indicating the predicted score of each of the $ K = CHW $ classes. Each $ x_n $ is mapped to a predicted label $ \hat{l}_n $ given by its maximal index: $ \hat{l}_n = \arg\max\limits_k x_{nk} $
  2. $ (N \times 1 \times 1 \times 1) $ the labels l, an integer-valued blob with values $ l_n \in [0, 1, 2, ..., K-1] $ indicating the correct class label among the $ K $ classes.
colToptop output blob vector (length 1)
  1. $ (1 \times 1 \times 1 \times 1) $ the computed accuracy: $ \frac{1}{N} \sum\limits_{n=1}^N \delta\{ \hat{l}_n = l_n \} $ where $ \delta\{\mathrm{condition}\} = \left\{ \begin{array}{lr} 1 \: \mbox{if condition} \\ 0 \: \mbox{otherwise} \end{array} \right. $

Definition at line 192 of file AccuracyLayer.cs.

◆ LayerSetUp()

override void MyCaffe.layers.AccuracyLayer< T >.LayerSetUp ( BlobCollection< T >  colBottom,
BlobCollection< T >  colTop 
)
virtual

Setup the layer.

Parameters
colBottomSpecifies the collection of bottom (input) Blobs.
colTopSpecifies the collection of top (output) Blobs.

Implements MyCaffe.layers.Layer< T >.

Definition at line 84 of file AccuracyLayer.cs.

◆ Reshape()

override void MyCaffe.layers.AccuracyLayer< T >.Reshape ( BlobCollection< T >  colBottom,
BlobCollection< T >  colTop 
)
virtual

Reshape the bottom (input) and top (output) blobs.

Parameters
colBottomSpecifies the collection of bottom (input) Blobs.
colTopSpecifies the collection of top (output) Blobs.

Implements MyCaffe.layers.Layer< T >.

Definition at line 96 of file AccuracyLayer.cs.

Property Documentation

◆ ExactNumBottomBlobs

override int MyCaffe.layers.AccuracyLayer< T >.ExactNumBottomBlobs
get

Returns the number of bottom blobs used: predicted, label

Definition at line 59 of file AccuracyLayer.cs.

◆ MaxTopBlobs

override int MyCaffe.layers.AccuracyLayer< T >.MaxTopBlobs
get

Returns the maximum number of top blobs: accuracy, labels

Definition at line 75 of file AccuracyLayer.cs.

◆ MinTopBlobs

override int MyCaffe.layers.AccuracyLayer< T >.MinTopBlobs
get

Returns the minimum number of top blobs: accuracy

Definition at line 67 of file AccuracyLayer.cs.


The documentation for this class was generated from the following file: